Nuclear astrophysics with TAGS

Víctor Guadilla

SEN group, Subatech

credit: Dana Berry and Erica Drezek, NASA/Goddard Space Flight Cente

Víctor Guadilla

NUSPIN 2019

26/06/2019 1 / 38

DAG

2 Astrophysical motivation

In process and X-ray bursts

Astrophysical motivation

4 rp-process and X-ray bursts

β decay studies

ヘロト 人間ト 人団ト 人団ト

β decay studies

<ロト < 回ト < 回ト < 回ト < 回ト -

β decay studies

 β -strength in the Fermi theory framework

$$S_{\beta}(E_x) = \sum_{E_f \in \Delta E} \frac{\frac{1}{\Delta E} I_{\beta}(E_x)}{f(Q_{\beta} - Ex, Z)T_{1/2}} =$$
$$= \frac{1}{6146 \pm 7} \left(\frac{g_A}{g_V}\right)^2 \sum_{E_f \in \Delta E} \frac{1}{\Delta E} \frac{B(GT)_{i \to f}}{B(GT)_{i \to f}}$$

Determining I_{β}

 I_{β} are often deduced from γ -intensity balance of the cascades that follow the β decay, using **HPGe detectors**:

(日本) (日本) (日本)

Determining I_{β}

 I_{β} are often deduced from γ -intensity balance of the cascades that follow the β decay, using **HPGe detectors**:

Low efficiency of HPGe detectors \rightarrow what happens if we miss a γ -ray?

Determining I_{β}

 I_{β} are often deduced from γ -intensity balance of the cascades that follow the β decay, using **HPGe detectors**:

Low efficiency of HPGe detectors \rightarrow what happens if we miss a γ -ray? Pandemonium effect J.C. Hardy et al., PLB 71 (1977) 307

A 44	-	
Victor		
VICLOI	Gue	

Total Absorption γ -Ray Spectroscopy (TAGS)

A Total Absorption Spectrometer (TAS) acts as a **calorimeter**, absorbing the full energy released in the β -decay process.

It requires:

Large scintillator crystals covering a solid angle of $\sim 4\pi$ in order to maximize the $\gamma\text{-ray}$ detection efficiency.

		<ロト < 部 > < 国 > < 国 > < 国 > 三	$\mathcal{O} \land \mathcal{O}$
Víctor Guadilla	NUSPIN 2019	26/06/2019	6 / 38

Total Absorption γ -Ray Spectroscopy (TAGS)

Inverse problem:

$$d_i = \sum_{j=1}^m \boldsymbol{R_{ij}(B)} f_j$$

- $j \rightarrow$ levels, $i \rightarrow$ experimental bins
- f_j : $I_\beta(E)$ distribution
- d_i : experimental spectrum
- R_{ij} : response matrix of the detector
- B: branching ratio matrix (depends on the decay)

A deconvolution process to extract f_i

J.L. Tain and D. Cano-Ott NIMA 571 (2007) 728

NUSPIN 2019

Total Absorption γ -Ray Spectroscopy (TAGS)

Examples of Total absorption γ -ray spectrometers I

Lucrecia

Rocinante

- Lucrecia: Nal(TI) mono-crystal with cylindrical shape (38 cm diameter and 38 cm length). Permanent set-up at ISOLDE (CERN).
- **Rocinante**: cylindrical 12-fold segmented BaF₂ detector (25 cm external diameter and 25 cm length). Used in experiments at IGISOL (Jyväskylä).

Examples of Total absorption γ -ray spectrometers II

J.L. Tain et al., NIMA 803 (2015) 36

- \bullet 16-18 Nal(Tl) crystals of 150 mm \times 150 mm \times 250 mm
- Used in experiments at IGISOL (Jyväskylä)
- Recently used at RIKEN

DTAS

Nucleosynthesis

Nucleosynthesis

Nucleosynthesis

Ingredients of network calculations

For exotic neutron-rich and neutron-deficient nuclei:

- Nuclear masses
- Decay rates: β^- decay, EC/ β^+ decay, p-decay, α -decay...
- Reaction rates: (n,γ) , (p,γ) , (α,γ) ...
- Fission rates and yields

Ingredients of network calculations

For exotic neutron-rich and neutron-deficient nuclei:

- Nuclear masses
- Decay rates: β^- decay, EC/ β^+ decay, p-decay, α -decay...

• Reaction rates: (n, γ), (p, γ), (α , γ)...

Fission rates and yields

Ingredients of network calculations

For exotic neutron-rich and neutron-deficient nuclei:

- Nuclear masses
- Decay rates: β^- decay, EC/ β^+ decay, p-decay, α -decay...

• Reaction rates: (n, γ), (p, γ), (α , γ)...

- Fission rates and yields
- From experiment, when available
- From theory (SM, QRPA, Hauser-Feshbach...)

Ingredients of network calculations

For exotic neutron-rich and neutron-deficient nuclei:

- Nuclear masses
- Decay rates: β^- decay, EC/ β^+ decay, p-decay, α -decay...

• Reaction rates: (n, γ), (p, γ), (α , γ)...

- Fission rates and yields
- From experiment, when available
- Isom theory (SM, QRPA, Hauser-Feshbach...)
- From systematics

Víctor Guadilla

Validation of theoretical models

Validation with integral quantities (P_n values, $T_{1/2}$)

P. Möller PRC 67, 055802 (2003)

Validation of theoretical models

Validation with **integral** quantities (P_n values, $T_{1/2}$)

P. Möller PRC 67, 055802 (2003)

R. Caballero-Folch et al. PRL 117, 012501 (2016)

Problems to describe coherently the observed half-lives across N=126

	_	
Mict	~r (-	2
VILL		a

Validation of theoretical models

Need of validating models with β strength comparisons: full information about the overlap of parent and daughter nuclear wave functions

E. Nacher et al., PRL 92 (2004) 232501 QRPA calculations: P. Sarriguren et al., PRC 89 (2014)

. Sarriguren et al., PRC 89 (2014) 034311

Astrophysical motivation

イロト イポト イヨト イヨト

r-proces

r-process

<ロト < 回ト < 巨ト < 巨ト

- $N_n \sim 10^{20} {\rm cm}^{-3}$ and T $\geq 1 {\rm GK}$
- Half of nuclei beyond iron
- Sites: Core Collapse Supernova, Neutron Star Mergers

Víctor Guadilla

NUSPIN 2019

26/06/2019 16 / 38

r-proces

r-process

<ロト < 回ト < 巨ト < 巨ト

- $N_n \sim 10^{20} {\rm cm}^{-3}$ and T $\geq 1 {\rm GK}$
- Half of nuclei beyond iron
- Sites: Core Collapse Supernova, Neutron Star Mergers

NUSPIN 2019

26/06/2019 16 / 38

Neutron star mergers: GW170817

Kilonova

Electromagnetic signature of the r-process due to radioactive decay of r-process nuclei Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010)

Kasen et al, Nature 551, 80 (2017)

() Hot r-process: β decay-(n, γ) competition during freeze out

② Cold r-process: equilibrium β decay-(n, γ) not reached

イロト イポト イヨト イヨト

- **(**) Hot r-process: β decay-(n, γ) competition during freeze out
- **2** Cold r-process: equilibrium β decay-(n, γ) not reached
 - Cross sections are not measurable: from Hauser-Feshbach (HF) statistical model calculations

- **(**) Hot r-process: β decay-(n, γ) competition during freeze out
- **2** Cold r-process: equilibrium β decay-(n, γ) not reached
 - Cross sections are not measurable: from Hauser-Feshbach (HF) statistical model calculations
 - Parameters (NLD, PSF, NTC) for the HF calculations are obtained from data close to stability

- **(**) Hot r-process: β decay-(n, γ) competition during freeze out
- **2** Cold r-process: equilibrium β decay-(n, γ) not reached
 - Cross sections are not measurable: from Hauser-Feshbach (HF) statistical model calculations
 - Parameters (NLD, PSF, NTC) for the HF calculations are obtained from data close to stability
 - How reliable are (n, γ) HF estimations far from stability?

- **(**) Hot r-process: β decay-(n, γ) competition during freeze out
- **2** Cold r-process: equilibrium β decay-(n, γ) not reached
 - Cross sections are not measurable: from Hauser-Feshbach (HF) statistical model calculations
 - Parameters (NLD, PSF, NTC) for the HF calculations are obtained from data close to stability
 - How reliable are (n, γ) HF estimations far from stability?
 - Constrained with different indirect techniques A.C.Larsen et al., Prog. in Particle and Nuclear Physics 107 (2019)

< ロト < 同ト < ヨト < ヨ

Connection with β -delayed neutron emission

Difficulty to observe γ de-excitation from states above S_n

J.L. Tain et al., PRL 115 (2015) 062502

Víctor Guadilla

NUSPIN 2019

26/06/2019 19 / 38

Some cases studied at IGISOL

Nuclide	Q_{β} [keV]	S_n in daughter [keV]	P _n [%]
⁸⁷ Br	6818	5515.17	2.60
⁸⁸ Br	8975	7053	6.58
^{94}Rb	10283	6831	10.5
^{95}Rb	9228	4345	8.7
137	6027	4025.56	7.14

 $\begin{array}{c} 2009 \longleftrightarrow \mathsf{Rocinante} \\ \mathsf{J.L.} \ \mathsf{Tain} \ \mathsf{et} \ \mathsf{al.}, \ \mathsf{PRL} \ \mathsf{115} \ (2015) \ \mathsf{062502} \\ \mathsf{E.} \ \mathsf{Valencia} \ \mathsf{et} \ \mathsf{al.}, \ \mathsf{PRC} \ \mathsf{95} \ (2017) \ \mathsf{024320} \\ \hline 2014 \longleftrightarrow \mathsf{DTAS} \\ \mathsf{V.} \ \mathsf{Guadilla} \ \mathsf{et} \ \mathsf{al.}, \ \mathsf{NIMB} \ \mathsf{376} \ (2016) \ \mathsf{334} \\ \mathsf{V.} \ \mathsf{Guadilla} \ \mathsf{et} \ \mathsf{al.} \ (2019) \end{array}$

- 4 目 ト - 4 目 ト - 4

IGISOL-IV: Jyväskylä (Finland)

▶ < ≣ ▶ ≣ ∽ < C 26/06/2019 21 / 38

<ロト < 回ト < 巨ト < 巨ト

IGISOL-IV: Jyväskylä (Finland)

21 / 38

IGISOL-IV: Jyväskylä (Finland)

Víctor Guadilla

NUSPIN 2019

r-proces

DTAS@IGISOL: set-up

- Scintillator plastic β detector
- HPGe detector
- Tape station
- MC characterization of the detectors

V. Guadilla et al., NIMB 376 (2016) 334 V. Guadilla et al., NIMA 910 (2018) 79

Víctor Guadilla

NUSPIN 2019

26/06/2019 22 / 3

β -delayed neutron emission: ¹³⁷I

- Q_{β} =6027 keV and S_n =4025 keV
- P_n =7.14% and $T_{1/2}$ =24.5 s
- Neutrons interact with DTAS (inelastic, capture...) \rightarrow MC

ト イヨト イヨト

r-proces

¹³⁷I: analysis

¹³⁷I: analysis

Envelope of solutions compatible with data:

- Daughter normalization
- β -n normalization
- Summing-pileup normalization
- Known level scheme
- Deconvolution algorithm
- β detector efficiency
- β-gated vs. singles vs. neutron veto

• Branching ratio variations: parameters of level density, γ -strength function, spin-parity values of known level scheme, better reproduction of known γ -intensities etc.

¹³⁷I: analysis

Envelope of solutions compatible with data:

- Daughter normalization
- β -n normalization
- Summing-pileup normalization
- Known level scheme
- Deconvolution algorithm
- β detector efficiency
- β-gated vs. singles vs. neutron veto

• Branching ratio variations: parameters of level density, γ -strength function, spin-parity values of known level scheme, better reproduction of known γ -intensities etc.

¹³⁷I: multiplicities

Víctor Guadilla

NUSPIN 2019

26/06/2019 26 / 38

¹³⁷I: individual modules

Three classes of modules geometrically equivalent

MC with event generator \hookrightarrow Input: I_{β} of the analysis + branching ratio matrix

26/06/2019 27 / 38

r-proces

γ emission above S_n

N 10 .	~	1211
Victor		dilla.
VICTOR	uuu	umu

NUSPIN 2019

26/06/2019 28 / 38

r-proces

γ emission above S_n

Víctor Guadilla

NUSPIN 2019

26/06/2019 28 / 38

γ emission above S_n

Nucleus	P_{γ} ENSDF [%]	P_γ DTAS [%]	P_n [%]
¹³⁷ I	2.76	$8.88^{+1.96}_{-1.53}$	7.33(38)

V. Guadilla et al.(2019)

γ emission above S_n

Enhanced γ -branching in ⁹⁴Rb with respect to H-F \Rightarrow increase in the photon strength function \Rightarrow similar increase in the (n, γ) cross section

J.L. Tain et al., PRL 115 (2015) 062502 E. Valencia et al., PRC 95 (2017) 024320

Astrophysical motivation

イロト イポト イヨト イヨト

X-ray bursts: intense x-ray emission

- Type I: instabilities in the accretion disk (binary system: neutron star + main sequence or red giant star)
- $T_{peak} =$ 1-3 GK and $ho = 10^6$ -10⁷ g/cm³
- Light curves with a large variety of shapes
- Fast rise (1-10 s), peak luminosity of 10^{38} erg s⁻¹ + slower decline
- $\bullet\,$ When $\beta\text{-decay}$ competes with proton capture \Rightarrow waiting points

The role of electron capture

- Electron capture to weak-decay rates was traditionally neglected in model calculations of Type I X-ray bursts
- cEC process plays an important role in the weak-decay rates of nuclei close to the proton drip-line in XRB calculations.

P. Sarriguren, PRC 83 (2011) 025801

Waiting points and TAGS@ISOLDE: ⁷²Kr, ⁷⁶Sr

⁷⁶Sr: E. Nacher et al., PRL 92 (2004) 232501

⁷²Sr: J.A. Briz et al., PRC 92 (2015) 054326:

also beyond-mean-field: A. Petrovici a and O. Andrei EPJA (2015) 51: 133

	<u> </u>
Victor	
VILLUI	

Waiting points and TAGS@ISOLDE: ⁶⁴Ge and ⁶⁸Se

- IS570: ^{64,66}Ge in May 2015: analysis ongoing
- \bullet ^{68,70}Se foreseen after the long shutdown of CERN

⁶⁴Ge and ⁶⁸Se: cEC-decay rates higher than the $β^+$ decay rates: factor 2 For their **N=Z+2 neighbours** factor 100

Astrophysical motivation

4) rp-process and X-ray bursts

イロト イボト イヨト イヨ

 \bullet TAGS results allow to compare experimental and theoretical β strength distributions

イロト イヨト イヨト イ

- \bullet TAGS results allow to compare experimental and theoretical β strength distributions
- Sensitivity to $I_{\beta\gamma}$ above S_n : larger than expected!

- \bullet TAGS results allow to compare experimental and theoretical β strength distributions
- Sensitivity to $I_{\beta\gamma}$ above S_n : larger than expected!
- Interaction of neutrons with the spectrometer

- TAGS results allow to compare experimental and theoretical β strength distributions
- Sensitivity to $I_{\beta\gamma}$ above S_n : larger than expected!
- Interaction of neutrons with the spectrometer
- Comparison with HF calculations: Γ_{γ} width \rightarrow (n, γ)

- TAGS results allow to compare experimental and theoretical β strength distributions
- Sensitivity to $I_{\beta\gamma}$ above S_n : larger than expected!
- Interaction of neutrons with the spectrometer
- Comparison with HF calculations: Γ_{γ} width \rightarrow (n, γ)
- Measurements at IGISOL and ISOLDE with nuclear astrophysics motivations

- TAGS results allow to compare experimental and theoretical β strength distributions
- Sensitivity to $I_{\beta\gamma}$ above S_n : larger than expected!
- Interaction of neutrons with the spectrometer
- Comparison with HF calculations: Γ_{γ} width \rightarrow (n, γ)
- Measurements at IGISOL and ISOLDE with nuclear astrophysics motivations
- Important decays for the r-process and for the rp-process

Thank you very much for your attention!

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

(日) (部) (注) (注) (注)

1