

GANIL E710 (C. MICHELAGNOLI ET AL) UNDERSTANDING COSMIC ABUNDANCE OF ²²NA

<image>

C. Fougères GANIL/CEA intern, M2 NPAC student Supervised by F. de Oliveira GANIL/CNRS-IN2P3

NUSPIN 2019 - Orsay - C. Fougères

Astrophysical context : Novae

Nova = white dwarf (WD) star accreting matter from red giant

Thermonuclear events at WD surface

Novae model uncertainties

- Amount of admixed WD material with accreted matter
- Total ejected mass

Impact

- Abundances of nuclei
- Test of Nova models
- Isotopic anomaly presolar grains in meteorites
- Excess of ²²Ne in the galactic cosmic rays
- Number of supernovae SNIa (dark energy)

Astrophysical context : Novae

Laboratoire commun CEA/DRF SPIRAL 2 CNR5/IN2P3

 $^{22}\text{Na}\ \text{E}_{\gamma}$ = 1.275 MeV has never been observed

ONe novae : synthesis of radioactive nuclei 22 Na τ =2.6yr

- Transparent to thermonuclear medium
- Space correlation with Nova

Destruction reaction ²²Na(p, γ)²³Mg

Resonant reaction = Breit Wigner cross section => nuclear reaction rate linear to ωy resonance strength

$$\langle \sigma v \rangle_{total} = \Sigma_{resonance} \left(\frac{2\pi}{\mu_{(2^2Na,p)} k_B T} \right)^{\frac{3}{2}} * \hbar^2 * \omega \gamma * \exp\left(-\frac{Er}{k_B T}\right)$$

Direct measurements of $\omega\gamma$ (TRIUMF/Canada experiment ²²Na(p, γ)²³Mg)

GANIL E710 : Experimental setup

SPIDER first results

Identification of light reaction elements (p, ⁴He)

SPIDER first results

Identification of light reaction elements (p, ⁴He)

γ rays = Doppler redshifted

$$E_{\gamma} = E_{\gamma,0} \frac{(1-\beta^2)^{\frac{1}{2}}}{1-\beta \ \cos\theta_{\gamma}}$$

NUSPIN 2019 - Orsay - C. Fougères

γ rays = Doppler redshifted

$$E_{\gamma} = E_{\gamma,0} \frac{(1-\beta^2)^{\frac{1}{2}}}{1-\beta \ \cos\theta_{\gamma}}$$

Figure 4: Decay scheme of two $^{23}Mg^*$ states, at (E = 7.786 MeV, E = 9.238 MeV).

γ rays = Doppler redshifted

$$E_{\gamma} = E_{\gamma,0} \frac{(1-\beta^2)^{\frac{1}{2}}}{1-\beta \ \cos\theta_{\gamma}}$$

Figure 4: Decay scheme of two $^{23}Mg^*$ states, at (E = 7.786 MeV, E = 9.238 MeV).

Preliminary measurement of $\beta = 0.077 + -0.003$

γ rays = Doppler redshifted

$$E_{\gamma} = E_{\gamma,0} \frac{(1-\beta^2)^{\frac{1}{2}}}{1-\beta \ \cos\theta_{\gamma}}$$

Figure 4: Decay scheme of two $^{23}Mg^*$ states, at (E = 7.786 MeV, E = 9.238 MeV).

Preliminary measurement of $\beta = 0.077 + -0.003$

Background reduction in y spectra

Coïncidence with VAMOS ⁴He

Background reduction in y spectra

Coïncidence with VAMOS ⁴He

Background reduction in y spectra

Coïncidence with VAMOS ⁴He

NUSPIN 2019 - Orsay - C. Fougères

Preliminary results on T

laboratoire commun CEA/DRF

Simulated γ spectra as a function of τ^{23} Mg* states => Doppler shifted simulated γ peak broader as τ larger

Preliminary results on T

Simulated γ spectra as a function of τ^{23} Mg* states => Doppler shifted simulated γ peak broader as τ larger

NUSPIN 2019 - Orsay - C. Fougères

Preliminary results on T

Simulated y spectra as a function of $\tau^{23}Mg^*$ states = Doppler shifted simulated y peak broader as T larger

NUSPIN 2019 - Orsay - C. Fougères

My Nova simulation : heuristic model

NeNaMg nuclear network simulation ($T_{nova} = 0.2$ GK during 20s)

Conclusion

- Iaboratoire commun CEA/DRF Spilai 2 CNR5/IN2P3
- ONe Nova nuclear network : 0.213MeV dominant resonance on destruction ²²Na(p, γ)²³Mg confirmed Nova simulation : ²²Na ejected matter dependence on τ (²³Mg*_{7.786})
 - \Rightarrow T =10fs, Flux = **2.47 10⁻⁵ ph.cm⁻².s⁻¹** (Nova 1kpc) vs SPI sensitivity **3.10⁻⁵ ph.cm⁻².s⁻¹**
- 2. E710 GANIL indirect experiment : ${}^{3}\text{He}({}^{24}\text{Mg},{}^{4}\text{He}){}^{23}\text{Mg}^{*}$ with particle detectors (SPIDER/VAMOS) and γ ray detector AGATA
- 3. E710 first results on particle/ γ data
 - SPIDER : identification of (p, ⁴He) dE-E curbs
 - AGATA : DS/notDS lines from ²³Mg*, ²²Na* preliminary estimations of β (²³Mg*) and τ (²³Mg*_{2.052})

Outlook

- 1. Proton branching ratio B_p
- 2. Excited ${}^{23}Mg_{7.786}$ lifetime (shape analysis with simulated γ spectra)
- Impact of derived resonant destruction rate on nova ²²Na abundance (simulation with more complex models)

Conclusion

- Iaboratoire commun CEA/DRF SPICAL 2 CNR5/IN2P3
- ONe Nova nuclear network : 0.213MeV dominant resonance on destruction ²²Na(p, γ)²³Mg confirmed Nova simulation : ²²Na ejected matter dependence on τ (²³Mg*_{7.786})
 - \Rightarrow T =10fs, Flux = 2.47 10⁻⁵ ph.cm⁻².s⁻¹ (Nova 1kpc) vs SPI sensitivity 3.10⁻⁵ ph.cm⁻².s⁻¹
- 2. E710 GANIL indirect experiment : ${}^{3}\text{He}({}^{24}\text{Mg},{}^{4}\text{He}){}^{23}\text{Mg}^{*}$ with particle detectors (SPIDER/VAMOS) and γ ray detector AGATA
- 3. E710 first results on particle/ γ data
 - SPIDER : identification of (p, ⁴He) dE-E curbs
 - AGATA : DS/notDS lines from ²³Mg*, ²²Na* preliminary estimations of β (²³Mg*) and τ (²³Mg*_{2.052})

Outlook

- 1. Proton branching ratio B_p
- 2. Excited ${}^{23}Mg_{7.786}$ lifetime (shape analysis with simulated γ spectra)
- Impact of derived resonant destruction rate on nova ²²Na abundance (simulation with more complex models)

Thank you for your attention

- (1) The lifetime of the 6.79 MeV state in ¹⁵O as a challenge for nuclear astrophysics and γ–ray spectroscopy : a new DSAM measurement with the AGATA Demonstrator array.
 C. Michelagnoli, Thesis (2013)
- (2) Measurements of lifetimes in ²³Mg.
- O.S Kirsebom et al. Physical Review Letters (2016)
- Direct Measurements of ²²Na(p, γ)²³Mg Resonances and Consequences for ²²Na Production in Classical Novae.
- A.L Sallaska et al, Physical Review Letters (2010)

Appendice

Astrophysical search for ²²Na line at 1.275 MeV

Gamma spectrum resulting from observation with SPI over 3years (1). The flux represents cumulative emission toward Galatic Center fitted by novae assumed spatial distribution.

- \Rightarrow Line at 1.275 hardly seen : 1.3 10⁻⁵ ph.cm⁻².s⁻¹ (1 σ)
- ⇒ With 1/3 One novae at rate 30 per year, derived ejected mass upper limit 2.5-5.7 10^{-7} M_☉ per outburst

Important issue to tackle : instrument background level high at the energy looked at (activation by Cosmic Rays of aluminium material near detector)

NPAC defence - Orsay - C. Fougères

A. Lifetime vs resonance strength

A. Detectors

NPAC defence - Orsay - C. Fougères

© P. Stroppa/CEA

A. Reaction kinematics

A. Coïncidence with ⁴He

First results : AGATA y lines

