

LUNA,

Laboratory for Underground Nuclear Astrophysics

D. Piatti¹ for LUNA collaboration

¹= INFN of Padova, Italy

Laboratory for Underground Nuclear Astrophysics

- Reactions of the stellar and primordial nucleosynthesis network
- Reactions possible in a small energy

- Great suppression of cross-sections:
 σ(E) = S(E) e^{-2πη} E⁻¹ ~ pb
- → Low counting rate ~ 1 c/d
- Signal = a needle in a haystack of cosmic rays at the surface labs
 LUNO

Laboratory for Underground Nuclear Astrophysics

Bemmerer et al., EPJA (2005)

~ 5 orders of magnitude lower

Laboratory for Underground Nuclear Astrophysics

Bruno et al., PRL (2016)

Background reduced by factor 15

LUNA50kV: Yesterday

- Activity 1991 2001
- Home-made accelerator
- H⁺ and He⁺ beams
- pp-chain:
 - ²H(p, γ)³He
 - ³He(³He,2p)⁴He

NuSpln - 24th-28th June 2019 - Orsay, France

LUNA400kV: Today

- 2001 ...
- LUNA400 kV \rightarrow High intensity and high stability H⁺ and He⁺ beam
- Delivered to the Solid Target or Gas Target
- CNO cycle and "relatives" + primordial nucleosynthesis:

²²Ne(α,γ)²⁶Mg ¹³C(α,n)¹⁶O

JNN

- s-process in AGB stars and in massive stars
- High precision measurement \rightarrow High accuracy D abundance p+D
 - ⁶Li(p,γ)⁷Be He et al. 2013 \rightarrow resonance at E_{cm} = 195 keV

²²Ne(α , γ)²⁶Mg – Astrophysical Motivation

- ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$ (Q = 10.6 MeV) competes with ${}^{22}Ne(\alpha,n){}^{25}Mg$ (Q = 478 keV)
- ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$ reaction rate **high uncertainty** affects isotopes production up to ${}^{31}P$ in AGB stars [Karakas et al. 2006]
- Poorly constrained strength
- of 395 keV resonance:
- No direct measurements
- Only Upper Limits reported
- 6 orders of magnitude range

²²Ne(α , γ)²⁶Mg – phase I

- 99.9% enriched and pure ²²Ne gas
- 399.9 keV $^{\scriptscriptstyle +}\text{H}$ beam, I ~ 250 μA
- Differential pumped windowless gas target system → three pumping stages
- $P_{line} = 10^{-7} \rightarrow 10^{-3} \text{ mbar}$, $P_{chamber} = 1 \text{ mbar}$
- Recirculation mode
- Calorimetric measurement of the beam intensity

	t _m [d]	Charg e [C]	Target Gas	P _{target} [mbar]	Εα [keV]	Δ Ε α [keV]
Laboratory Background	49	-	-	vacuum	-	-
Beam Induced Background	0.5	13.5	Ar	0.468	399.9	10.8
On Resonance	21.2	430	22 Ne	1	399.9	10.8

- Laboratory Background spectra acquired before and during the measurement
- Experimental Problems \rightarrow insufficient statistics for the B.I.B. estimation
- Contamination in the target gas was monitored using a mass spectrometer and the Buffer pressure as reference

- There is no evidence of signal in the ROI \rightarrow N < $L_{_{\rm C}}$ (95% confidence level)

²²Ne(α , γ)²⁶Mg – phase II

- 10 cm thick shield of borated polyethylene
- Setup improved

UNN

- B.I.B. to be measured at the same statistic
 - \rightarrow Goal: 1 order of magnitude down

⁶Li(p, γ)⁷Be – Astrophysical Motivation

- HPGe at -55° and Si at +125° w.r.t. beam direction
- HPGe at 1.7 cm and Si at 10 cm w.r.t. target

Target Type	Nominal Thickness
⁶ Li ₂ O	 40 μg/cm² 20 μg/cm²
⁶ Li ₂ WO ₄	 100 μg/cm² 130 μg/cm²
⁶ LiCl	Infinite

- $E_p: 80 \rightarrow 390 \text{ keV}$
- Stability of the target checked

- Measurement performed at Helmholtz- Zentrum Dresden-Rossendorf Laboratories
- After the experiment at LUNA
- Two techniques:
- NRA: exploiting the resonance at 1175 keV ${}^{6}\text{Li}(\alpha,\gamma){}^{10}\text{B}$ ($\omega\gamma = 0.366 \pm 0.038 \text{ eV}, \Gamma = 1.7 \text{ eV}$) [Gyürky et al., EPJA (2004)]
- \rightarrow Distribution of ⁶Li with target depth
- ERDA: incident ion ³⁵Cl⁷⁺, incident angle 70°, scattering angles 31° and 41°
- \rightarrow Composition of the target

Results

LUNAMV: Tomorrow

- High performance 3.5MVaccelerator
 by HV → now under test
 - H^+ , $He^{+, 12}C^+$ and ${}^{12}C^{2+}$ beams
- Two beamlines
- Study of helium and carbon buning
 - ¹⁴N(p, γ)¹⁵O \rightarrow CNO bottle-neck
 - ${}^{12}C + {}^{12}C \rightarrow$ "Holy Grail"
 - ²²Ne(α ,n)²⁵Mg and ¹³C(α ,n)¹⁶O
 - \rightarrow s-process in AGB and massive

stars

LUNAMV: Tomorrow

- High performance 3.5MVaccelerator
 by HV → now under test
 - H^+ , $He^{+, 12}C^+$ and ${}^{12}C^{2+}$ beams
 - Two beamlines
 - Study of helium and carbon buning
 - ¹⁴N(p, γ)¹⁵O \rightarrow CNO bottle-neck
 - ${}^{12}C + {}^{12}C \rightarrow$ "Holy Grail"
 - ²²Ne(α ,n)²⁵Mg and ¹³C(α ,n)¹⁶O
 - \rightarrow s-process in AGB and massive

stars

Conclusion

- The extremely low laboratory background of LNGS has allowed for the first time the realization of nuclear physics experiments with very small count rates, down to a couple of events per month
- Several hydrogen burning and BBN fusion reactions have been studied in the last 25 years
- A new phase devoted to helium and carbon burning is starting with LUNA-MV
- **LUNA will be not anymore alone**: JUNA (China), Felsenkeller (Germany), Caspar (United States)

LUNA Collaboration

- A. Boeltzig, L. Csedreki, A. Formicola, M. Junker, D.Ciccotti | INFN LNGS
- C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti | Università di Padova and INFN Padova, Italy
- C. Gustavino | INFN Roma 1, Italy
- D. Bemmerer, K. Stöckel , M. Takács | HZDR Dresden, Germany
- Z. Elekes, Zs. Fülöp, Gy. Gyürky, T. Szücs, G.F. Ciani | **MTA-ATOMKI Debrecen**, **Hungary**
- M. Lugaro | Monash University Melbourne, Australia
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy
- P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- A. Guglielmetti, Eliana Masha | Università di Milano and INFN Milano, Italy
 J. Balibrea, A. Best, A. Di Leva, G. Imbriani | Università di Napoli and INFN Napoli, Italy
- F. Cavanna, G. Gervino | Università di Torino and INFN Torino, Italy
- M. Aliotta, C. Bruno, T. Chillery, T. Davinson | University of Edinburgh, United Kingdom
- F. Barile, G. D'Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, L. Schiavulli | Università di Bari and INFN Bari, Italy
- R. Perrino | INFN Lecce, Italy

Thank You