

Signatures of correlations in the ¹³²Sn mass region

Houda NAÏDJA

LPMPS, Université Constantine 1, Algeria.

NUSPIN2019

Orsay 23-28 June, 2019

Spectroscopic properties and collectivity in even-even nuclei

PHYSICAL REVIEW C 96, 034312 (2017)

Shell-model investigation of spectroscopic properties and collectivity in the nuclei beyond ¹³²Sn

H. Naïdja,^{1,2,3} F. Nowacki,¹ and B. Bounthong¹
¹Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
²GSI Helmholtzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
³Université Constantine 1, LPMS, route Ain El Bey 25000 Constantine, Algeria (Received 20 June 2017; published 13 September 2017)

EPJ Web of Conferences 193, 01005 (2018)

https://doi.org/10.1051/epjconf/201819301005

First signs of collectivity in N = 86 and 88 isotones above ¹³²Sn

Houda NAÏDJA^{1,2,*} and Frédéric NOWACKI^{1,**}

¹ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France ² Université Constantine 1, LPMPS, route Ain El Bey 25000 Constantine, Algeria

Spectrscopic properties of odd-mass nuclei

12th International Spring Seminar on Nuclear Physics

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 966 (2018) 012061

doi:10.1088/1742-6596/966/1/012061

Shell-model investigation of odd-mass nuclei in the $^{132}\mathbf{Sn}$ region

H. Naïdja^{†,*}, F. Nowacki[†]

The first Shell-model investigation of doubly magic nucleus ¹³²Sn

PHYSICAL REVIEW LETTERS 121, 252501 (2018)

Enhanced Quadrupole and Octupole Strength in Doubly Magic ¹³²Sn

Part I : Quadrupole correlations in even-even nuclei

Te, *Xe*, *Ba*, *Ce*, *Nd* with $82 \le N \le 88$

In Collaboration with F. Nowacki (IPHC)

Energy levels of Te, Xe, Ba, Ce, Nd

H. Naïdja, F. Nowacki and B. Bounthong, PRC 96, 034312 (2017).

The calculations are achieved using N3LOP effective interaction

া প্র 7/34

Energy levels of Te, Xe, Ba, Ce, Nd

H. Naïdja, F. Nowacki and B. Bounthong, PRC 96, 034312 (2017).

E2 Transitions

H. Naïdja, F. Nowacki EPJ Web of Conferences 193, 01005 (2018).

- ✓ The overestimated ¹³⁶Te strength is now consistent with the new measurement
- ✓ small B(E2) in N=82 isotones, due to spherical character
- ✓ strong B(E2) in N=86 and 88 isotones, reflecting the presence of collective character

H. Naïdja, F. Nowacki and B. Bounthong, PRC 96, 034312 (2017).

H. Naïdja, F. Nowacki and B. Bounthong, PRC 96, 034312 (2017).

H. Naïdja, F. Nowacki and B. Bounthong, PRC 96, 034312 (2017).

H. Naïdja, F. Nowacki and B. Bounthong, PRC 96, 034312 (2017).

H. Naïdja, F. Nowacki and B. Bounthong, PRC 96, 034312 (2017).

Deformation parameters

β deformation parameter and γ angle*

- Mild deformation in ¹³⁸Te and ¹⁴⁰Te.
- Increase in deformation with non-axiality from ¹⁴⁰Xe to ¹⁴⁶Nd.
- The maximum of the collectivity in ¹⁴⁴Ba and ¹⁴⁶Ce

H. Naïdja, F. Nowacki and B. Bounthong, PRC 96, 034312 (2017).

EFFECTIVE g-factors

 $(g_{\pi}^{s}, g_{\pi}^{l}) = (3.250, 1.069)$ $(g_{\nu}^{s}, g_{\nu}^{l}) = (-1.506, 0.019)$ regions overall good agreement with the data

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

H. Naïdja, F. Nowacki and B. Bounthong, PRC 96, 034312 (2017).

FREE *g*—FACTORS $(g_{\pi}^{s}, g_{\pi}^{l}) = (5.5857, 1.0)$ $(g_{V}^{s}, g_{V}^{l}) = (-3.8263, 0.0)$ we overall bad agreement with the data

EFFECTIVE g-factors

 $(g_{\pi}^{s}, g_{\pi}^{l}) = (3.250, 1.069)$ $(g_{V}^{s}, g_{V}^{\prime}) = (-1.506, 0.019)$ Is overall good agreement with the

data

 $\mu(2^+,4^+,6^+)$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Part II : Octupole correlations : (Preliminary results)