The ISOLDE Solenoidal Spectrometer – First measurements

D. K. Sharp
The University of Manchester, UK

NuSpIn 24th-28th July 2019
Overview

Challenges for direct reaction measurements in inverse kinematics

Solenoid technique
 HELIOS

ISOLDE Solenoidal Spectrometer (ISS)

First measurements
 $^{28}\text{Mg}(d,p)^{29}\text{Mg}$
 $^{206}\text{Hg}(d,p)^{207}\text{Hg}$

Future upgrades for ISS
Nuclear structure from direct light-ion reactions

- **Single-particle states**, $E(\text{ex and sp})$, ℓ values, spectroscopic factors.
 Examples (d,p), (p,d), $(^3\text{He},d)$, $(d,^3\text{He})$…..

- **Pair correlations**
 Examples (p,t), (t,p), $(^3\text{He},n)$…..

- **Collective properties**
 - Examples (p,p'), (d,d'), (a,a')…..
Direct reactions with stable beams (normal kinematics)

Measurements with stable targets and stable beams have been made for many decades.

Beam currents of 10s nA – μA (10^{10}-10^{12} pps) of light ions incident on ~100μg/cm2 targets.

Limited in scope – majority of nuclei are unstable.

Can make very precise measurements.

Resolution 10s keV.

Chains of isotopes/isotones in 5-7 days.

Fewer places to do this!
Direct reactions with radioactive beams (inverse kinematics)

Beam currents of 100 fA – 10pA (10^4-10^6 pps) of radioactive nuclei incident on ~0.1-1mg/cm2 CD_2 targets.

Figure courtesy of B Kay
Direct reactions in inverse kinematics

In inverse kinematics Q-value spectrum affected by kinematic effects on the measured ejectile energies in lab frame - leading to poor resolution.

via kinematic shift often limits resolution of any detector with finite acceptance.

via kinematic compression dictates the separation of different excited states in ion energy.

BOTH affect the resolution obtained in a Q-value spectrum. 100s keV.

Despite same velocity in CM, LAB velocity changes with angle; resolution implications.

Kinematic shift:

\[\kappa = \frac{1}{\rho} \frac{dp}{d\theta} \]
Direct reactions in inverse kinematics

Particle detection at fixed angles using silicon arrays surrounding the target. (SHARC, T-REX, GODDESS).

Positioned inside arrays of high-resolution germanium detectors. (TIGRESS, MiniBall, Gammasphere).

Use information from gamma-rays to extract energies, proton yields.
“New” Technique for Magnetic Spectrometers: Solenoid

MEASURED QUANTITIES: position z, cyclotron period T_{cyc} and lab particle energy E_p

Suffers no kinematic compression of the Q-value spectrum

Linear relationship between E_{cm} and E_{lab}

$$T_{cyc} = \frac{2\pi m}{B q e}$$

$$E_{cm} = E_{lab} + \frac{mV_{cm}^2}{2} - \frac{mzV_{cm}}{T_{cyc}}$$

A. Wuosmaa et al. NIMA 580 (2007) 1290
Square barrel of 6 PSD per side 700μm, resistive division active area 9mm x 51mm

Acceptance depends on bore, array length, target-array distance and field: e.g. $d^{(28}\text{Si},p)$ @ 6 MeV/u 2.0 T, each detector 21 msr, total 0.50 sr
Early experiments using stable beams of varying mass with intensity similar to strong RIBs ~1e^7 pps
Energy resolution of ~75 keV achieved.

Evolution of single-particle levels at N=51 and N=83.

Test of tensor-interaction predictions.

Radioactive beams produced using in-flight facility at ANL – example 19O(d,p).

Studying evolution of single-particle levels across isotopic chain.

Results compared to shell-model calculations using USD interaction. Test assumptions on shell closures and understanding of 4p-0h states.

Many others – not limited to (d,p)
- 12,13B, 15C, 18N(d,p)
- 14,15C(d,3He)
- 14,15C(d,α)

And more stable beam work
- 20Ne(α,p)
- 10B(p,p')

A solenoid at a radioactive beam facility

Solenoid part of ISOL-SRS project. Originally meant to be external spectrometer for the TSR.

The TSR would have provided better quality beams than currently available from HIE-ISOLDE.

TSR removed from ISOLDE-CERN medium-term plan.

Solenoid could still take beam directly from HIE-ISOLDE.
Physics at HIE-ISOLDE with a solenoid

For direct reactions – ideally 10MeV/u beams at intensities > 10^5 pps – 5 day experiment.
Getting a magnet

OR66 4T ex-MRI magnet.

Only 10 ever made -> Argonne found three of them!
#2 SOLARIS -> FRIB
#10 ANL HEP
#5 ISS -> ISOLDE

Magnet available from Brisbane (UQ).
Getting a magnet
ISOLDE Solenoidal Spectrometer

Delivered - April 2016

Cooled and energized - January 2017/ Feb 2017

Moved in to hall - March 2017

Field Mapping - November 2017

Stable beam tests - May 2018

Miniball’s (and the SC’s) new neighbour
ISOLDE Solenoidal Spectrometer

Delivered - April 2016

Cooled and energized - January 2017/ Feb 2017

Moved in to hall - March 2017

Field Mapping - November 2017

Stable beam tests – May/September 2018

Uniformity and field pattern as expected.
ISOLDE Solenoidal Spectrometer

Delivered - April 2016

Cooled and energized - January 2017/ Feb 2017

Moved in to hall - March 2017

Field Mapping - November 2017

Stable beam tests – May/September 2018

Beam profile scans – FWHM<1.5mm
Test of ANL array and DAQ - ~110keV FWHM (200ug target) – comparable with simulations.
Ground states and low-lying excitations from intruder configurations have been observed.

Prevalence of negative-parity states is indicative of cross-shell excitations.

In the Ne, Al and Na isotopes there is a soft transition to a deformed ground state.

In Mg isotopes this transition is sharper with 31Mg inside the island and 30Mg outside.

Measurements of the single-particle properties moving into the island of inversion provide important systematic information on the behavior of the relevant orbitals and shell gaps.

In particular the difference between the $d_{3/2}$ orbitals and fp-shell which define the N=20 shell gap.
The island of inversion is indicative of a **weakening shell gap**.

In the oxygen isotopes the N=20 shell gap has been shown to disappear with **the emergence of an N=16 shell gap** in 24O.

Again measurement of the single-particle states involved in this **evolution of single-particle structure** will provide valuable comparison with theory.

Along N=16 $\pi d_{5/2}$ is emptying. Differing overlaps with $\nu d_{3/2}$, $\nu f_{7/2}$ and $\nu p_{3/2}$ results in **different monopole shifts**.

29Mg is an N=17 isotone – single-particle structure outside N=16 informative in tracking disappearance of N=20 shell gap.
EXP #1 IS621 – $^{28}\text{Mg}(d,p)^{29}\text{Mg}$

10^6 pps 9.473 MeV/u (dE/E = 0.3%) beam – highest HIE-ISOLDE RIB beam energy per nucleon.

ISS set at a field of 2.5T – 2 target-array positions used to cover 10°<θ_{cm}<40° for states up to ~ 4MeV.
EXP #1 IS621–$^{28}\text{Mg}(d,p)^{29}\text{Mg}$ reaction gating

recoil-array timing
EXP #1 IS621 – $^{28}\text{Mg}(d,p)^{29}\text{Mg}$ reaction gating

recoil-array timing

recoil energy gate

Excitation spectrum

Excitation spectrum with Recoil

Excitation spectrum with Mg recoil
EXP#2 IS631 - 206Hg(d,p)207Hg

N=127 istones below Pb

Below Pb, around N=126 very little is known.

Evolution of single-particle structure not investigated in lead region – requires heavy RIB’s which HIE-ISOLDE can provide

Few theoretical studies on single-particle excitations.

s-states in loosely bound systems tend to linger below threshold—this feature seems to dominate the structural changes in light nuclei, and that results in halo structures. Does this characteristic of s-states play a role in loosely bound heavier systems?

Experimental info:
• ~5×10^6 pps of ^{206}Hg for ~82 hours.

• A 7.4 MeV/u ^{206}Hg beam – highest total HIE-ISOLDE beam >1.5 GeV

• Measured in singles mode

• Beam purity >98%.

• Using >30 deuterated polyethylene targets of ~165μg/cm2

• ISS set to B-field of 2.5 T
Future developments

New array (Constructed at University of Liverpool – ready to ship to CERN).

- DSSDs + ASIC readout.
- 1mm thick.
- x: 128 x 0.95mm x 4 each side.
- y: 11 x 2mm x 6 sides.

New fast-counting ionization chamber to be constructed at The University of Manchester 2019/20.

- Up to 100 kHz counting.
- Segmented with digital readout – sample dE/dx along track of recoils.

SpecMat – time projection chamber with gamma ray detection.

Germanium spectrometer tests in the solenoid field.
Conclusions

First two experiments with ISS have both been successful.

Also for HIE-ISOLDE operating at new extremes of energy.

Operation of ISS in two different mass regions demonstrated.

Probing evolution of single-particle structure along N=17 and towards IOI.

Probing terra incognita region south of 208Pb.

More to come after LS2!

Workshop 27th-28th August, University of Liverpool. https://indico.cern.ch/e/ISSWorkshop2019