The ISOLDE Solenoidal Spectrometer - First measurements

Overview

Challenges for direct reaction measurements in inverse kinematics
Solenoid technique
HELIOS
ISOLDE Solenoidal Spectrometer (ISS)
First measurements
${ }^{28} \mathrm{Mg}(d, p)^{29} \mathrm{Mg}$
$\left.{ }^{206} \mathrm{Hg}(d, p)^{207} \mathrm{Hg}\right]$
Future upgrades for ISS

Nuclear structure from direct light-ion reactions

- Single-particle states, E (ex and sp), ℓ values, spectroscopic factors.

Examples (d,p), (p,d), ($\left.{ }^{3} \mathrm{He}, d\right),\left(d,{ }^{3} \mathrm{He}\right) \ldots$.

- Pair correlations

Examples (p, t), (t,p), ($\left.{ }^{3} \mathrm{He}, n\right) \ldots$.

- Collective properties
- Examples (p, $\left.p^{\prime}\right),\left(d, d^{\prime}\right),\left(a, a^{\prime}\right) \ldots .$.

Direct reactions with stable beams (normal kinematics)

Measurements with stable targets and stable beams have been made for many decades.

Beam currents of 10 s $n A-\mu A\left(10^{10-10^{12}} \mathrm{pps}\right)$ of light ions incident on $\sim 100 \mathrm{ug} / \mathrm{cm}^{2}$ targets.

Limited in scope - majority of nuclei are unstable.

Can make very precise measurements.
Resolution 10 skeV .

Chains of isotopes/isotones in 5-7 days
Fewer places to do this!

Direct reactions with radioactive beams (inverse kinematics)

Beam currents of $100 f A-10 p A\left(10^{4}-10^{6} \mathrm{pps}\right)$ of radioactive nuclei incident on $\sim 0.1-1 \mathrm{mg} / \mathrm{cm}^{2}$ $C D_{2}$ targets.
e.g. TRIUMF
$\sqrt{4}$
e.g. ISOLDE
e.g. ReA

Direct reactions in inverse kinematics

In inverse kinematics Q-value spectrum affected by kinematic effects on the measured ejectile energies in lab frame - leading to poor resolution.
via kinematic shift often limits resolution of any detector with finite acceptance.
via kinematic compression dictates the separation of different excited states in ion energy.
$B O T H$ affect the resolution obtained in a Q-value spectrum. 100s keV.

[^0]Despite same velocity in CM, $\angle A B$ velocity changes with angle; resolution implications.
Kinematic shift:

$$
\kappa=\frac{1}{p} \frac{\mathrm{~d} p}{\mathrm{~d} \theta}
$$

Direct reactions in inverse kinematics

Particle detection at fixed angles using silicon arrays surrounding the target. (SHARC, T-REX, GODDESS).

Positioned inside arrays of highresolution germanium detectors. (TIGRESS, MiniBall, Gammasphere).

Use information from gamma-rays to extract energies, proton yields.

"New" Technique for Magnetic Spectrometers: Solenoid

MEASURED QUANTITIES: position z, cyclotron period $T_{c y c}$ and lab particle energy E_{p}

$$
T_{\mathrm{cyc}}=\frac{2 \pi}{B} \frac{m}{q e}
$$

Suffers no kinematic compression of the Q-value spectrum
Linear relationship between $E_{c m}$ and $E_{l a b}$

$$
E_{\mathrm{cm}}=E_{\mathrm{lab}}+\frac{m V_{\mathrm{cm}}^{2}}{2}-\frac{m z V_{\mathrm{cm}}}{T_{\mathrm{cyc}}}
$$

HELIOS@ANL

Square barrel of 6 PSD per side $700 \mu \mathrm{~m}$, resistive division active area $9 m m \times 51 \mathrm{~mm}$

Acceptance depends on bore, array length, target-array distance and field: e.g. d($\left.{ }^{28} \mathrm{Si}, \mathrm{p}\right) @ 6 \mathrm{MeV} / \mathrm{u} 2.0$ T, each detector 21 msr , total 0.50 sr

Expectations confirmed by $d\left({ }^{28} S i, p\right) @ 8 \mathrm{MeV} / \mathrm{u}, 1.9 \mathrm{~T}$, $84 \mathrm{\mu gCm}^{-2} \mathrm{CD}_{2}$:

Results from HELIOS@ANL

Early experiments using stable beams of varying mass with intensity similar to strong RIBs $\sim 1 e^{7}$ pps Energy resolution of $\sim 75 \mathrm{keV}$ achieved.

Evolution of single-particle levels at $N=51$
 and $N=83$.

B. P. Kay et al, Phys.Rev.C 84024325 (2011)

Test of tensor-interaction predictions.

Results from HELIOS@ANL

Radioactive beams produced using in-flight facility at ANL - example ${ }^{19} O(d, p)$.

Studying evolution of single-particle levels across isotopic chain.

Results compared to shell-model calculations using USD interaction. Test assumptions on shell closures and understanding of $4 p-0 h$ states.

Many others - not limited to (d, p)

- ${ }^{12,13} B,{ }^{15} C,{ }^{18} N(d, p)$
- ${ }^{14,15} \mathrm{C}\left(d,{ }^{3} \mathrm{He}\right)$
- $\quad 14,15 C(d, a)$

And more stable beam work

- ${ }^{20} \mathrm{Ne}(a, p)$
- ${ }^{10} B\left(p, p^{\prime}\right)$
C. R. Hoffman et. al., Phys. Rev. C 85, 054318 (2012)

A solenoid at a radioactive beam facility

Solenoid part of ISOL-SRS project. Originally meant to be external spectrometer for the TSR.

The TSR would have provided better quality beams than currently available from HIE-ISOLDE.

TSR removed from ISOLDE-CERN medium-term plan.
Solenoid could still take beam directly from HIE-ISOLDE.

Physics at HIE-ISOLDE with a solenoid

FSOLDE
For direct reactions - ideally 10MeV/u beams at intensities > 10^5 pps - 5 day experiment.

Getting a magnet

OR66 4T ex-MRI magnet.
Only 10 ever made -> Argonne found three of them!
\#2 SOLARIS -> FRIB
\#10 ANL HEP \#5 ISS -> ISOLDE

Magnet available from Brisbane (UQ).

Calicanto Bridge

Getting a magnet

Sarah

ISOLDE Solenoidal Spectrometer

Delivered - April 2016
Cooled and energized - January 2017/ Feb 2017

Moved in to hall - March 2017
Field Mapping - November 2017
Stable beam tests - May 2018

Miniball's (and the SC's) new neighbour

ISOLDE Solenoidal Spectrometer

Delivered - April 2016
Cooled and energized - January 2017/ Feb 2017

Moved in to hall - March 2017
Field Mapping - November 2017
Stable beam tests - May/September 2018

Uniformity and field pattern as expected.

ISOLDE Solenoidal Spectrometer

Delivered - April 2016
Cooled and energized - January 2017/ Feb 2017

Moved in to hall - March 2017
Field Mapping - November 2017
Stable beam tests - May/September 2018

Beam profile scans - FWHM<1.5mm
Test of ANL array and DAQ - ~110keV FWHM (200ug target) comparable with simulations.

EXP \#1 IS621 - Changing shell-structure near Island of Inversion

Ground states and low-lying excitations from intruder configurations have been observed.

Prevalence of negative-parity states is indicative of crossshell excitations.

In the Ne, Al and Na isotopes there is a soft transition to a deformed ground state.

In Mg isotopes this transition is sharper with ${ }^{31} \mathrm{Mg}$ inside the island and ${ }^{30} \mathrm{Mg}$ outside.

Measurements of the single-particle properties moving in to the island of inversion provide important systematic information on the behavior of the relevant orbitals and shell gaps.

In particular the difference between the $d_{3 / 2}$ orbitals and fpshell which define the $N=20$ shell gap.

EXP \#1 IS621 - Changing shell-structure near Island of Inversion

The island of inversion is indicative of a weakening shell gap.
In the oxygen isotopes the $N=20$ shell gap has been shown to disappear with the emergence of an $\mathrm{N}=16$ shell gap in ${ }^{24} \mathrm{O}$.

Again measurement of the single-particle states involved in this evolution of single-particle structure will provide valuable comparison with theory.

Along $N=16 \pi d_{5 / 2}$ is emptying. Differing overlaps with $v d_{3 / 2}, v f_{7 / 2}$ and $v p_{3 / 2}$ results in different monopole shifts.
${ }^{29} \mathrm{Mg}$ is an $\mathrm{N}=17$ isotone - single-particle structure outside $N=16$ informative in tracking disappearance of $N=20$ shell gap.

EXP \#1 IS621- ${ }^{28} \mathrm{Mg}(d, p)^{29} \mathrm{Mg}$

$10^{\wedge} 6$ pps $9.473 \mathrm{MeV} / \mathrm{u}(\mathrm{dE} / \mathrm{E}=0.3 \%$) beam highest HIE-ISOLDE RIB beam energy per nucleon.

ISS set at a field of 2.5T-2 target-array positions used to cover $10^{\circ}<\theta_{c m}<40^{\circ}$ for states up to $\sim 4 \mathrm{MeV}$.

EXP \#1 IS621- ${ }^{28} \mathrm{Mg}(d, p)^{29} \mathrm{Mg}$ reaction gating

EXP \#1 IS621- ${ }^{28} \mathrm{Mg}(\mathrm{d}, \mathrm{p})^{29} \mathrm{Mg}$ reaction gating

EXP\#2 IS631-206 $\mathrm{Hg}(d, p)^{207} \mathrm{Hg}$

Slides courtesy of B Kay

$\mathrm{N}=127$ istones below Pb

Below Pb, around $N=126$ very little is known.
Evolution of single-particle structure not investigated in lead region - requires heavy RIB's which HIE-ISOLDE can provide

Few theoretical studies on single-particle excitations.
s-states in loosely bound systems tend to linger below threshold-this feature seems to dominate the structural changes in light nuclei, and that results in halo structures. Does this characteristic of s-states play a role in loosely bound heavier systems?

EXP\#2 IS631- ${ }^{206} \mathrm{Hg}(d, p)^{207} \mathrm{Hg}$ set up

Slides courtesy of B Kay

Argonne Δ

Experimental info:

- $\quad \mathbf{5 \times 1 0 ^ { 5 }}$ pps of ${ }^{206} \mathrm{Hg}$ for ~82 hours.
- A 7.4 MeV/u ${ }^{206} \mathrm{Hg}$ beam - highest total HIEISOLDE beam >1.5 GeV
- Measured in singles mode
- Beam purity $\mathbf{> 9 8 \%}$.
- Using >30 deuterated polyethylene targets of ~165 $\mu \mathrm{g} / \mathrm{cm} 2$
- ISS set to B-field of 2.5 T

Future developments

New array (Constructed at University of Liverpool ready to ship to CERN).

DSSDs + ASIC readout.
1 mm thick.
$x: 128 \times 0.95 m m \times 4$ each side.

$y: 11 \times 2 m m x 6$ sides.
New fast-counting ionization chamber to be constructed at The University of Manchester 2019/20. Up to 100 kHz counting.
Segmented with digital readout - sample dE/dx along track of recoils.

SpecMat - time projection chamber with gamma ray detection.

Germanium spectrometer tests in the solenoid field.

Conclusions

First two experiments with ISS have both been successful.
Also for HIE-ISOLDE operating at new extremes of energy.
Operation of ISS in two different mass regions demonstrated.
Probing evolution of single-particle structure along $N=17$ and towards IOI.
Probing terra incognita region south of ${ }^{208} \mathrm{~Pb}$.
More to come after LS2!
Workshop $\mathbf{2 7}^{\text {th }} \mathbf{- 2 8}^{\text {th }}$ August, University of Liverpool. https://indico.cern.ch/e/ISSWorkshop2019

ISS collaboration

UNIVERSITY OF LIVERPOOL

MANCHESTER 1824

The University of Manchester

KULEUVEN

mniversidad de Huelva

TECHNISCHE UNIVERSITAT DARMSTADT

THE UNIVERSITY of EDINBURGH

Science \& Technology
Facilities Council

JYVÄSKYLÄN YLIOPISTO
UNIVERSITY OF JYVÄSKYLÄ

Università Degli Stud di Padova

UNIVERSITY OF SURREY

[^0]: K.L. Jones et al. Nature 465 (2010) 7297

