

Seniority conservation along N=50: The neutron-magic ⁹⁰Zr, ⁹²Mo and ⁹⁴Ru

R.M. Pérez-Vidal for the AGATA, VAMOS++ and IKP Plunger Collaboration

Orsay, 24th-28th June 2019

Outline

- Physics Motivation
- Production Mechanism
- Experimental Setup
- o Analysis
- o Results
- Summary and Outlook

Physics Motivation

Seniority in the g_{9/2} shell

- Seniority, v, can be viewed as a partial dynamical symmetry
- Shell Model orbitals for valence π along N=50 are the same as for valence v along Z=28
- g_{9/2}, first shell in which seniority might not be conserved
- Same nuclear structures for Valence Mirror Symmetry Partners (?)
- Effective two-body interaction is different along $g_{9/2}$ near ¹⁰⁰Sn and around ⁷⁸Ni
- Calculations suggest 4+ in ⁹⁴Ru and ⁹⁶Pd have v=2 and 4+ in ^{72,74}Ni have v=4

Z=28

61Ni 62Ni

63Ni 64Ni

65Ni 66Ni 67Ni 68Ni

Valence Mirror Symmetry Partners

N=50

 $1g_{9/2}$

⁹⁸Cd

⁹⁵Rh

93TC

92Mo

91Nb

87Rb

⁸⁵Br

84Se

⁸³As

⁸¹Ga

 $1f_{5/2}$

2 p_{3/2}

⁷³Ni

Physics Motivation

Shell model theory in the valence space

¹⁰⁰Sn

⁹⁹In

98Cd

⁸⁹Y

88Sr

N=50

 $f_{5/2'} p_{3/2'} p_{1/2'} g_{9/2}$

Physics Motivation

Shell model theory in the valence space

¹⁰⁰Sn

⁹⁹In

98Cd

⁸⁹Y

88Sr

N=50

 $f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2}$

Production Mechanism

Multi-nucleon Transfer

Deep-inelastic reactions used since pioneering work of R.Broda et al. PLB 251 (90) 245

MASS

Experimental Setup GANIL

Cologne differential plunger setup for RDDS measurements in grazing reactions. A.Dewald, Th. Pissulla, J. Jolie IKP-Uni. Köln.

Total Kinetic Energy Loss (TKEL)

TKEL ↓↓ population of lower excited states TKEL ↑↑ population of higher excited states

⁹²Mo Gamma Tracked Spectrum

⁹⁴Ru Gamma Tracked Spectrum

⁹⁰Zr Gamma Tracked Spectrum

RDDS technique (Recoil Distance Doppler-Shift)

A. Dewald et al. Prog. Part. Nucl. Phys. 63 (3)2012

SMN=50 $4+\rightarrow 2+$ \uparrow 100 \uparrow 92Mo 94Ru 96Pd 98Cd

⁹⁴Ru 4+→2+ lifetime

Feeding from 5⁻ taken into account

⁹⁰Zr 4⁺→2⁺ preliminary lifetime

Q value to avoid 6⁺ feeding

B(E2)

Nucleus	State	τ (ps)	B(E2) (e ² fm ⁴)
⁹² Mo	4+→2+	35.3(6)	84.4 (14)
⁹⁴ Ru	4+→2+	87 (8)	38(3)
⁹⁰ Zr	4+→2+	4.2(4)	300 (30)

[1] A.F. Lisetskiy et al. PRC 2004
[2] H. Mach et al. PRC 2017
[3] A. Gargano Private communication
[4] http://www.nndc.bnl.gov/nndc/ensdf/

Shell model theory in the proton valence space $f_{5/2'} p_{3/2'} p_{1/2'} g_{9/2}$					
A. F	. Lisetskiy et al. PRC 2004	A. 6	Gargano (private comm 2019)		
0	Bonn-C	0	Bonn-A		
0	e _p =2	0	e _p =1.55		

Summary and Outlook

- Experimental study of the seniority along the N=50 isotones in the vicinity of ¹⁰⁰Sn
- o Successful lifetime measurement of the 4⁺→2⁺ yrast transition in ⁹⁰Zr, ⁹²Mo and ⁹⁴Ru at GANIL using **AGATA + PLUNGER + VAMOS++** for 7 target-degrader distances (19,25,105,505,1000,2000,4000 µm)
- The results are being interpreted on the basis of Shell Model predictions for the comparison of the nuclear structure trends between the valence mirror symmetry partners ⁵⁶⁻⁷⁸Ni Z=28 isotopes and ⁷⁸Ni- ¹⁰⁰Sn N=50 isotones
- Lifetimes and B(E2) for the $4^+ \rightarrow 2^+ {}^{90}$ Zr, 92 Mo and 94 Ru allow to eventually confirm the conservation of seniority predicted by the Shell Model calculations

Summary and Outlook

- Experimental study of the seniority along the N=50 isotones in the vicinity of ¹⁰⁰Sn
- o Successful lifetime measurement of the 4⁺→2⁺ yrast transition in ⁹⁰Zr, ⁹²Mo and ⁹⁴Ru at GANIL using **AGATA + PLUNGER + VAMOS++** for 7 target-degrader distances (19,25,105,505,1000,2000,4000 µm)
- The results are being interpreted on the basis of Shell Model predictions for the comparison of the nuclear structure trends between the valence mirror symmetry partners ⁵⁶⁻⁷⁸Ni Z=28 isotopes and ⁷⁸Ni- ¹⁰⁰Sn N=50 isotones
- Lifetimes and B(E2) for the $4^+ \rightarrow 2^+ {}^{90}$ Zr, 92 Mo and 94 Ru allow to eventually confirm the conservation of seniority predicted by the Shell Model calculations

Thank you to the AGATA, VAMOS++ and the IKP Plunger collaborations and all the e682 collaborators

Seniority conservation along N=50: The neutron-magic ⁹⁰Zr, ⁹²Mo and ⁹⁴Ru

R.M. Pérez-Vidal for the AGATA, VAMOS++ and IKP Plunger Collaboration

UNIÓN EUROPEA

Cofinanciado por el Fondo Europeo de Desarrollo Regional Una manera de hacer Europa Supported by MINECO, Spain Grant n. FPA2014-57196-C5

