Seniority conservation along N=50: The neutron-magic 90Zr, 92Mo and 94Ru

R.M. Pérez-Vidal
for the AGATA, VAMOS++ and IKP Plunger Collaboration

NuSplIn 2019 | Orsay, 24th-28th June 2019
Outline

- Physics Motivation
- Production Mechanism
- Experimental Setup
- Analysis
- Results
- Summary and Outlook
Physics Motivation

Seniority in the $g_{9/2}$ shell

- Seniority, ν, can be viewed as a partial dynamical symmetry
- Shell Model orbitals for valence π along $N=50$ are the same as for valence ν along $Z=28$
- $g_{9/2}$, first shell in which seniority might not be conserved
- Same nuclear structures for Valence Mirror Symmetry Partners (?)
- Effective two-body interaction is different along $g_{9/2}$ near 100Sn and around 78Ni
- Calculations suggest 4+ in 94Ru and 96Pd have $\nu=2$ and 4+ in 72,74Ni have $\nu=4$
Physics Motivation

Shell model theory in the valence space $f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2}$

Valence Mirror Symmetry Partners

Physics Motivation

Shell model theory in the valence space $f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2}$

Valence Mirror Symmetry Partners

N=50

Production Mechanism

Multi-nucleon Transfer

Reaction $^{92}Mo + ^{92}Mo$:
- Beam energy: 716.9 MeV
- Grazing angle LAB: ~23 °
- $E_{CM}/V_B \sim 1.75$

Deep-inelastic reactions used since pioneering work of R. Broda et al. PLB 251 (90) 245

G. Pollarolo (private comm 2015)

Deep-inelastic reactions used since pioneering work of R. Broda et al. PLB 251 (90) 245

~ few mb for 94Ru
Experimental Setup

GANIL

Experimental Setup

VAMOS++ Setup:
- Horizontal Acceptance: ±7°
- Vertical Acceptance: ±10°
- DM/M~1/220
- DZ/Z~1/66
- Angle 23 degrees
- Brho ~ 0.91
- ToF ~ 237.5 ns

Agata Setup:
- 23 Crystals
- Counting rate per crystal: 50 kHz
- Shaping 2.5 us
- Position: Nominal (23.5 cm)

Plunger Setup:
- 7 distances (μm): 19, 25, 105, 505, 1000, 2000, 4000

AGATA
- Target \(^{92}\text{Mo}\) 0.77 mg/cm\(^2\)
- Degrader Mg 1.9 mg/cm\(^2\)
- Plunger R DDS
- Quadrupoles
- VAMOS++
- TOF
- Dipole
- MWPPAC DC
- MWFP & OrGAMMA

Trigger: MWPPAC & MWFP & OrGAMMA

\(^{92}\text{Mo} @ 716.9\) MeV
Experimental Setup

92Mo @ 716.9 MeV

Particle ID: A
- Beam Spot size: 2mmx5mm
- Position resolution: 4mm
- From DPS-MWPC

Particle ID: Z
- Z = 42
- Z = 44
- Z = 40

Target
- 92Mo
- 0.77mg/cm²

Trigger
- MWPPAC & MWFP & OrGAMMA

VAMOS++
- Setup:
 - Horizontal Acceptance: ±7°
 - Vertical Acceptance: ±10°
 - DM/M~1/220
 - DZ/Z~1/66
 - Angle 23 degrees
 - Brho ~ 0.91
 - ToF ~ 237.5 ns

Plunger Setup
- 7 distances (μm): 19, 25, 105, 505, 1000, 2000, 4000

Agata Setup
- 23 Crystals
- Counting rate per crystal: 50 kHz
- Shapping 2.5 us
- Position: Nominal (23.5cm)

Agata
- 23 Crystals
- Counting rate per crystal: 50 kHz
- Shapping 2.5 us
- Position: Nominal (23.5cm)

Dipole
- Wien Filter (not used)
Analysis

Total Kinetic Energy Loss (TKEL)

TKEL ↓↓ population of lower excited states
TKEL ↑↑ population of higher excited states
Analysis

^{92}Mo Gamma Tracked Spectrum

Counts (0.5 keV/ch)

- 244.39 keV (5→4+)
 - 1.55 ns
- 329 keV (6→4+)
 - 1.53 ns
- 773 keV (4→2+)
- 1340 keV (3→2+)
 - 0.27 ps
- 1509 keV (2→0+)
 - 0.35 ps

Inelastic

19 μm

Energy (keV)

G.S. Stable

$^{82}\text{Mo}_{50}$

Isomer

2612.4 keV

2282.6 keV

773.09 keV

1509.5 keV

$^{3+}$

$^{5+}$

$^{6+}$

$^{4+}$

$^{2+}$

$^{0+}$
Analysis

94Ru Gamma Tracked Spectrum

- 126.5 keV (5\rightarrow6+)
- 0.51 ns
- 437.7 keV (5\rightarrow4+)
- 0.51 ns
- 725.3 keV (12\rightarrow10+)
- 23.8 ps
- 755.9 keV (4\rightarrow2+)
- <3.47 ps
- 1340 keV (10\rightarrow8+)
- 1430.7 keV (2\rightarrow0+)
- 1033.3 keV (7\rightarrow5-)
- 2186.6 keV
- 755.9 keV
- G.S. 51.8 m
- 1430.7 keV
- 94
- 44
- 50Ru
Analysis

90Zr Gamma Tracked Spectrum

- Counts (2 keV/ch)
- Energy (keV)
- MNT -2p 19μm

- 890.64 keV ($4^+ \rightarrow 2^+$) 890.64 keV
- 2186.3 keV ($2^+ \rightarrow 0^+$) 2186.3 keV
- 530 keV ($3^+ \rightarrow 2^+$) 530 keV
- 437.7 keV ($4^- \rightarrow 5^-$) 437.7 keV
- 530 keV ($6^+ \rightarrow 5^-$) 530 keV
- 0.14 ns

- Isomer
 - 8^+
 - 6^+

- 90Zr

- Z=40
- A=90
Analysis

RDDS technique
(Recoil Distance Doppler-Shift)

Lifetimes: ~1 to ~500 ps at v/c ≈ 10%

\[R(t) = \frac{l_u(t)}{l_u(t) + l_s(t)} = e^{-t/\tau} \]

\[\tau_i(t) = \frac{-R_i(t) + \sum_k R_k(t)}{d R_i(t)/dt} \]

A. Dewald et al. Prog. Part. Nucl. Phys. 63 (3)2012
Results

\[^{92}\text{Mo} \, 4^+ \rightarrow 2^+ \, \text{lifetime} \]

Q value to avoid 5\(^+\) & 6\(^+\) feeding

Small feeding from 5\(^+\) taken into account

\[^{92}\text{Mo} + ^{92}\text{Mo} \]

716 MeV

4\(^+\) \rightarrow 2^+ \rightarrow 0^+ \, \text{G.S. Stable} \]

Counts

716 MeV

773.09 keV

1509.5 keV

1509.5 keV

Energy (keV)

SM

N=50

4^+ \rightarrow 2^+

Distance (\mu m)

Q value to avoid 5\(^+\) & 6\(^+\) feeding

Small feeding from 5\(^+\) taken into account

DCM

\[\tau = 35.5 \pm 24 \, \text{ps} \]

DDCM

\[\tau = 34.6(14) \, \text{ps} \]
Results

$^{94}\text{Ru} \ 4^+ \rightarrow 2^+$ lifetime

Feeding from 5^+ taken into account

$^{92}\text{Mo} + ^{92}\text{Mo}$

716 MeV

$4^+ \rightarrow 2^+$

2186.6 keV

755.9 keV

1430.7 keV

G.S. Stable

$\tau = 89 (16) \text{ps}$

$\tau = 87 (8) \text{ps}$
Results

\(^{90}\text{Zr} \, 4^+ \rightarrow 2^+ \) preliminary lifetime

\(Q \) value to avoid 6^+ feeding

\[0^+ \rightarrow 2^+ \]

\(\text{G.S.} \) Stable

\[4^+ \rightarrow 2^+ \]

\(\text{Q-value to avoid feeding} \)

\[\tau = 4.2(4) \text{ ps} \]

\[\tau = 4.3(7) \text{ ps} \]

\[716 \text{ MeV} \]

\[3448.2 \text{ keV} \]

\[890.64 \text{ keV} \]

\[2186.3 \text{ keV} \]
Results

B(E2)

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>State</th>
<th>τ (ps)</th>
<th>B(E2) (e^2fm^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92Mo</td>
<td>4$^+\rightarrow$2$^+$</td>
<td>35.3(6)</td>
<td>84.4 (14)</td>
</tr>
<tr>
<td>94Ru</td>
<td>4$^+\rightarrow$2$^+$</td>
<td>87 (8)</td>
<td>38(3)</td>
</tr>
<tr>
<td>90Zr</td>
<td>4$^+\rightarrow$2$^+$</td>
<td>4.2(4)</td>
<td>300 (30)</td>
</tr>
</tbody>
</table>

Shell model theory in the proton valence space $f_{5/2} p_{3/2} p_{1/2} g_{9/2}$

A. F. Lisetskiy et al. PRC 2004 A. Gargano (private comm 2019)
- Bonn-C
- $e_p=2$
- Bonn-A
- $e_p=1.55$

[3] A. Gargano Private communication
Summary and Outlook

1. Experimental study of the seniority along the N=50 isotones in the vicinity of 100Sn

2. Successful lifetime measurement of the $4^+ \rightarrow 2^+$ yrast transition in 90Zr, 92Mo and 94Ru at GANIL using AGATA + PLUNGER + VAMOS++ for 7 target-degrader distances (19,25,105,505,1000,2000,4000 μm)

3. The results are being interpreted on the basis of Shell Model predictions for the comparison of the nuclear structure trends between the valence mirror symmetry partners $^{56-78}$Ni Z=28 isotopes and 78Ni- 100Sn N=50 isotones

4. Lifetimes and B(E2) for the $4^+ \rightarrow 2^+$ 90Zr, 92Mo and 94Ru allow to eventually confirm the conservation of seniority predicted by the Shell Model calculations
Summary and Outlook

- Experimental study of the seniority along the N=50 isotones in the vicinity of 100Sn

- Successful lifetime measurement of the $4^+ \rightarrow 2^+$ yrast transition in 90Zr, 92Mo and 94Ru at GANIL using AGATA + PLUNGER + VAMOS++ for 7 target-degrader distances (19,25,105,505,1000,2000,4000 µm)

- The results are being interpreted on the basis of Shell Model predictions for the comparison of the nuclear structure trends between the valence mirror symmetry partners $^{56-78}$Ni Z=28 isotopes and 78Ni- 100Sn N=50 isotones

- Lifetimes and B(E2) for the $4^+ \rightarrow 2^+$ 90Zr, 92Mo and 94Ru allow to eventually confirm the conservation of seniority predicted by the Shell Model calculations

Thank you to the AGATA, VAMOS++ and the IKP Plunger collaborations and all the e682 collaborators
Seniority conservation along N=50: The neutron-magic ^{90}Zr, ^{92}Mo and ^{94}Ru

R.M. Pérez-Vidal for the AGATA, VAMOS++ and IKP Plunger Collaboration

Thank you for your attention