PolarEx

A facility for on-line nuclear orientation at ALTO

Rémy Thoër

CSNSM Université Paris-Sud - CNRS

Juin 2019

Rémy Thoër (CSNSM)

PolarEx

Juin 2019 1 / 17

<2> ► <</p>

Outline

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃ >

$$\begin{split} B &\sim 10 - 100 \ T \\ T &\sim 7 - 20 \ mK \end{split}$$

ELE SOG

(日) (四) (三) (三) (三)

$$\begin{split} B &\sim 10 - 100 \ T \\ T &\sim 7 - 20 \ mK \end{split}$$

• Indirect measurement of multipolarity mixing ratio δ

$$\delta = \frac{\langle I_f | O(\sigma'L') | I_i \rangle}{\langle I_f | O(\sigma L) | I_i \rangle} \text{ and } \delta^2 = \frac{P'_{\gamma}(\sigma'L')}{P_{\gamma}(\sigma L)}$$

Rémy Thoër (CSNSM)

Juin 2019 3 / 17

イロト イヨト イヨト イヨ

$$\begin{split} B &\sim 10 - 100 \ T \\ T &\sim 7 - 20 \ mK \end{split}$$

• Indirect measurement of multipolarity mixing ratio δ

$$\delta = \frac{\langle I_f | O(E2) | I_i \rangle}{\langle I_f | O(M1) | I_i \rangle} \text{ and } \delta^2 = \frac{P_{\gamma}(E2)}{P_{\gamma}(M1)}$$

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

EL SOC

.

 $\begin{array}{l} B\sim 10-100 \ T \\ T\sim 7-20 \ mK \end{array}$

- Indirect measurement of multipolarity mixing ratio δ
- Direct measurement of nuclear magnetic moments μ
- Applications in solid state physics (H_{Hf})

$$\delta = \frac{\langle I_f | O(E2) | I_i \rangle}{\langle I_f | O(M1) | I_i \rangle} \text{ and } \delta^2 = \frac{P_{\gamma}(E2)}{P_{\gamma}(M1)}$$

《曰》 《問》 《臣》 《臣》 크는

Juin 2019 4 / 17

3 = 990

3 = 990

Very low temperatures + High magnetic field

 $\Rightarrow \text{Angular distribution of the} \\ \text{emission is anisotropic } W(\theta)$

(日) (四) (三) (三) (三)

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)}$$

Rémy Thoër (CSNSM)

 $B = B_{applied} + H_{Hf}$

RF on \Rightarrow Destroy the anisotropy

Rémy	Thoër ((CSNSM)	
------	---------	---------	--

Juin 2019 7 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What is Polarex? The Set-up

- A ³He ⁴He dilution refrigerator
- A supraconductor magnet
- A ferromagnetic foil for the implantation of the nuclei
- 4 HPGe detectors with associated electronic
- Nuclear magnetic resonance

→ E → → E

What is Polarex?

Location

Located at ALTO in Orsay, France Currently off-line

Rémy Thoër	(CSNSM)
------------	---------

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)}$$

Rémy Thoër (CSNSM)

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

 $B_{\lambda}(I_0, T)$: Orientation parameter $U_{\lambda}(I_i, I_f)$: Deorientation coefficient $Q_{\lambda}(\theta)$: Solid angle correction $A_{\lambda}(\delta)$: Angular distribution $P_{\lambda}(\cos\theta)$: Legendre polynomial

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

 $B_{\lambda}(I_0, T)$: Orientation parameter $U_{\lambda}(I_i, I_f)$: Deorientation coefficient $Q_{\lambda}(\theta)$: Solid angle correction $A_{\lambda}(\delta)$: Angular distribution $P_{\lambda}(\cos\theta)$: Legendre polynomial

 B_{λ} depends on the spin and the temperature

Rémy Thoër (CSNSM)

Juin 2019 11 / 17

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

 $B_{\lambda}(I_0, T)$: Orientation parameter $U_{\lambda}(I_i, I_f)$: Deorientation coefficient $Q_{\lambda}(\theta)$: Solid angle correction $A_{\lambda}(\delta)$: Angular distribution $P_{\lambda}(\cos\theta)$: Legendre polynomial

 U_{λ} occurs at each "hidden" transition

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

 $B_{\lambda}(I_0, T)$: Orientation parameter $U_{\lambda}(I_i, I_f)$: Deorientation coefficient $Q_{\lambda}(\theta)$: Solid angle correction $A_{\lambda}(\delta)$: Angular distribution $P_{\lambda}(\cos\theta)$: Legendre polynomial

The multipole mixing ratio δ is taken from A_{λ}

Rémy Thoër	(CSNSM)
------------	---------

비교 ((교)) (교) (교) ((교))

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

 $B_{\lambda}(I_0, T)$: Orientation parameter $U_{\lambda}(I_i, I_f)$: Deorientation coefficient $Q_{\lambda}(\theta)$: Solid angle correction $A_{\lambda}(\delta)$: Angular distribution $P_{\lambda}(\cos\theta)$: Legendre polynomial

(日) (四) (三) (三) (三)

$$A_{\lambda} = \frac{F_{\lambda}(L, L, I_f, I_i) + 2\delta F_{\lambda}(L, L', I_f, I_i) + \delta^2 F_{\lambda}(L', L', I_f, I_i)}{1 + \delta^2}$$

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda}(I_0, T) U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

Method 1 : Direct calculation of the parameters

- Temperature dependent
- Need a good knowledge of the level scheme

Juin 2019 12 / 17

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda}(I_0, T) U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

Method 1 : Direct calculation of the parameters

- Temperature dependent
- Need a good knowledge of the level scheme

Juin 2019 12 / 17

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

Method 2 : Relative calculation with a pure transition

- Pure multipolarity
 - A_{λ} computed directly $A_{\lambda} = F_{\lambda}(L, L, I_f, I_i)$

A 30 b

^I0_____ Β_λ

Angular distribution of the emission

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

Method 2 : Relative calculation with a pure transition

- A_{λ} computed directly $A_{\lambda} = F_{\lambda}(L, L, I_f, I_i)$
- If the transition is associated to a pure one
 - Same B_{λ} and U_{λ}
 - Q_{λ} depends on the energy
 - Temperature independent

Juin 2019

13 / 17

$$\frac{A_2'}{A_2} = \frac{\frac{3}{8}[1 - W'(0)] + [W'(\pi/2) - 1]}{\frac{3}{8}[1 - W(0)] + [W(\pi/2) - 1]}$$

Bény Thoër (CSNSM) PolarEx

 I_1

Current Analysis : Sources of $^{54}\mathrm{Mn},\,^{56,57,58}\mathrm{Co}$ and $^{59}\mathrm{Fe}$

Produced by fusion-evaporation d+Fe at 11 MeV/A

• Evaluation of the temperature (⁶⁰Co inside the refrigerator)

▶ Ξ = ∽ Q Q

<ロ> (四) (四) (三) (三) (三)

- Evaluation of the temperature
- Correction of the energy fluctuation in the calibration
 ⇒ offset + gain

- Evaluation of the temperature
- Correction of the energy fluctuation in the calibration
- Background substraction
 - \Rightarrow "Trapezium method"

4 B M 4

ELE SOG

- Evaluation of the temperature
- Correction of the energy fluctuation in the calibration
- Background substraction
- Correction of the dead time
- Correction of the activity $\Lambda = exp(-\lambda\Delta t)$

> E = OQO

- Evaluation of the temperature
- Correction of the energy fluctuation in the calibration
- Background substraction
- Correction of the dead time
- Correction of the activity $\Lambda = exp(-\lambda\Delta t)$

$$n(\theta) = \sum_{runs} \frac{N(\theta)}{(T_{tot} - T_{dead}(\theta))\Lambda}$$

- Evaluation of the temperature
- Correction of the energy fluctuation in the calibration
- Background substraction
- Correction of the dead time
- Correction of the activity $\Lambda = exp(-\lambda\Delta t)$

$$n(\theta) = \sum_{runs} \frac{N(\theta)}{(T_{tot} - T_{dead}(\theta))\Lambda}$$

Last on going correction : Coincidence summing effects

Rémy	Thoër ((CSNSM)
------	---------	---------

Level scheme of 56 Fe

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Rémy Thoër (CSNSM)

PolarEx

Juin 2019 16 / 17

Rémy Thoër (CSNSM)

PolarEx

Juin 2019 16 / 17

Off-line physics case : Study of Pm isotopic chain (A=147, 149, 151)

- Measurement of H_{Hf} of Pm in Fe
- Measurement of the magnetic moments of Pm isotope

Off-line physics case : Study of Pm isotopic chain (A=147, 149, 151)

- Measurement of H_{Hf} of Pm in Fe
- Measurement of the magnetic moments of Pm isotope

Then... by 2020

On-line physics case : Study of Sb (A=130, 132, 134)

Off-line physics case : Study of Pm isotopic chain (A=147, 149, 151)

- Measurement of H_{Hf} of Pm in Fe
- Measurement of the magnetic moments of Pm isotope

Then... by 2020

On-line physics case : Study of Sb (A=130, 132, 134)

Off-line physics case : Study of Pm isotopic chain (A=147, 149, 151)

- Measurement of H_{Hf} of Pm in Fe
- Measurement of the magnetic moments of Pm isotope

Then... by 2020

On-line physics case : Study of Sb (A=130, 132, 134)

Thank you for your attention

Thanks to collaborators : I. Deloncle, C. Gaulard, F. Ibrahim, F. Le Blanc, S. Roccia, D. Verney and ALTO staff

Rémy Thoër (CSNSM)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

New line under construction

Rémy Thoër ((CSNSM)
--------------	---------

Juin 2019 18 / 17

Polarex : Which Nuclei?

- Limitation on the life-time
 - Need time to reach a thermal equilibrium
- Minimum flux of 10^3 ions/s ...
- ... and a maximum of 10^7 ions/s
- Need energy of at least 40 keV

 \Rightarrow At the end, around 300 nuclei are accessible at ALTO for On-Line Nuclear Orientation method

Off-line study : Pm

- H_{Hf} in Fe is badly known : $400 \pm 100 T$
- $\mu(^{147}\text{Pm})$ is known by laser spectroscopy : +2.58(7)
- Measurement of the resonant frequency (LTNO/NMR) $\Rightarrow \Delta E = \mu B/I$ $\Rightarrow Dreside II = in Fe at Province$
 - \Rightarrow Precise H_{Hf} in Fe at Pm site
- $\bullet\,$ Measurement of the magnetic moments of $^{149,151}\mathrm{Pm}$ isotope

 147 Pm : 2.62 y 149 Pm : 53.08 h 151 Pm : 28.4 h

LTNO Calculations

$$W(\theta) = \frac{N_{cold}(\theta)}{N_{warm}(\theta)} = 1 + \sum_{\lambda} B_{\lambda}(I_0, T) U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos\theta)$$

$$W(0) = 1 + B_2 U_2 Q_2 A_2 + B_4 U_4 Q_4 A_4$$

$$W(\pi/2) = 1 - \frac{1}{2} B_2 U_2 Q_2 A_2 + \frac{3}{8} B_4 U_4 Q_4 A_4,$$

$$A_{2} = \frac{\frac{3}{8}(1 - W(0)) + (W(\pi/2) - 1)}{-\frac{7}{8}B_{2}U_{2}Q_{2}}$$
$$A_{2}' = \frac{\frac{3}{8}(1 - W'(0)) + (W'(\pi/2) - 1)}{-\frac{7}{8}B_{2}'U_{2}'Q_{2}'}$$

$$\begin{split} \frac{A_2}{A_2'} &= \frac{\frac{3}{8}(1-W(0))+(W(\pi/2)-1)}{\frac{3}{8}(1-W'(0))+(W'(\pi/2)-1)} \\ \frac{A_4}{A_4'} &= \frac{\frac{1}{2}(1-W(0))-(W(\pi/2)-1)}{\frac{1}{2}(1-W'(0))-(W'(\pi/2)-1)}, \end{split}$$

Rémy Thoër (CSNSM)

Juin 2019 21 / 17