## Shape transition in the neutron-rich W isotopes on behalf of the E673 Experiment collaboration AGATA+FATIMA



TECHNISCHE UNIVERSITÄT DARMSTADT



## Shape transitions in the neutron-rich W, Os and Pt isotopes



Pt Transition region starts with A=192 and persists till A $\approx$ 200 with  $\gamma$ -soft ground states F. Todd Baker et al., Nucl. Phys. A266 (1976) 337.

Os Decrease in deformation, <sup>196</sup>Os  $\gamma$ -soft with a slight oblate deformation

P.R. John et al., Phys. Rev. C 90 (2), 021301.





Data taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

## Shape transitions in the neutron-rich W, Os and Pt isotopes



Pt Transition region starts with A=192 and persists till A $\approx$ 200 with  $\gamma$ -soft ground states F. Todd Baker et al., Nucl. Phys. A266 (1976) 337.

Os Decrease in deformation, <sup>196</sup>Os  $\gamma$ -soft with a slight oblate deformation

P.R. John et al., Phys. Rev. C 90 (2), 021301.



W Prolate to oblate shape transition predicted for A=190 till A=194

Data taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

## What we know of <sup>190</sup>W



#### Yrast band interpreted as prolate deformed

Yang Sun et al., Phys. Lett. B 659 (2008) 165â169

- ► Oblate shaped 10<sup>-</sup> isomer in <sup>190</sup>W PM. Walker, FR. Xu / Phys. Lett. B 635 (2006) 2868289 G.J. Lane et al, Phys. Rev. C 82, 051304(R) (2010) Yang Sun et al, Phys. Lett. B 659 (2008) 165á169
- ► Candidate for the 2<sup>+</sup><sub>2</sub> state observed N. Alkhomashi et al., Phys. Rev. C 80, 064308 (2009)
- Triaxial degree of freedom important for the description

P. Sarriguren et al., Phys. Rev. C 77, 064322 (2008 L.M. Robledo et al., J. Phys. G 36, 115104 (2009).



## **Experiment E673**



#### Goals

- First in-beam  $\gamma$ -ray spectroscopy of <sup>190</sup>W and <sup>192</sup>W
- Measurement the of  $B(E2; 2^+_1 \rightarrow 0^+_{gs})$  of <sup>190</sup>W and <sup>192</sup>W
- Reaction <sup>192</sup>Os + <sup>136</sup>Xe at 900 MeV
- ▶ 0.2pnA
- ► 45 mg/cm<sup>2</sup> <sup>192</sup>Os target
- AGATA nominal position
- ► FATIMA (Array of 24 LaBr<sub>3</sub>(Ce)) at 90° for fast timing, shielded with 1 mm µ material



## **Experiment E673**



#### Goals

- First in-beam  $\gamma$ -ray spectroscopy of <sup>190</sup>W and <sup>192</sup>W
- Measurement the of  $B(E2; 2^+_1 \rightarrow 0^+_{qs})$  of <sup>190</sup>W and <sup>192</sup>W

- Reaction <sup>192</sup>Os + <sup>136</sup>Xe at 900 MeV
- ▶ 0.2pnA
- ► 45 mg/cm<sup>2</sup> <sup>192</sup>Os target
- AGATA nominal position
- ► FATIMA (Array of 24 LaBr<sub>3</sub>(Ce)) at 90° for fast timing, shielded with 1 mm µ material



## **Typical use of AGATA**

#### Ancillary device, such as Vamos, MuGasT, selects good events





## **Trigger Experiment E673**



- ► AGATA γ − γ + FATIMA γ − γ, i.e. quadruple coincidences for lifetime measurement
- Also higher fold  $\gamma$  data



### Obtaining prompt events How to do it?



- TAC between AGATA and RF
- TAC between FATIMA and RF
- only in the datastream with FATIMA data
- Timestamped data
- ► Frequency of the cyclotron: 9.4565 MHz
- ► Every 105 ns a new bunch

## Prompt events with FATIMA

#### What does it mean?



TECHNISCHE UNIVERSITÄT DARMSTADT



# Time difference between FATIMA events and $\gamma-\gamma$ events



TECHNISCHE UNIVERSITÄT DARMSTADT

#### identification



# Time difference for $\gamma-\gamma$ Trigger

#### Identified!





## Sorting higher Cubes and Hypercubes

#### Determation of correct time differences





# Lifetime measurement with FATIMA (near line results)



- highest cross section for transfer <sup>190</sup>Os
- demonstartion that we can measure lifetimes with this setup



## Identification Beam-like recoils



|                   |                   | <sup>131</sup> La | <sup>132</sup> La | <sup>133</sup> La | <sup>134</sup> La | <sup>135</sup> La | <sup>136</sup> La |                   | <sup>138</sup> La |                   | <sup>140</sup> La |                   |                   |                   |                   |                   |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                   | <sup>129</sup> Ba |                   | <sup>131</sup> Ba |                   |                   |                   |                   |                   |                   |                   | <sup>139</sup> Ba | <sup>140</sup> Ba | <sup>141</sup> Ba | <sup>142</sup> Ba | <sup>143</sup> Ba |                   |
| <sup>127</sup> Cs | <sup>128</sup> Cs | <sup>129</sup> Cs | <sup>130</sup> Cs |                   | <sup>132</sup> Cs |                   | <sup>134</sup> Cs | <sup>135</sup> Cs | <sup>136</sup> Cs | <sup>137</sup> Cs | <sup>138</sup> Cs | <sup>139</sup> Cs | <sup>140</sup> Cs | <sup>141</sup> Cs | <sup>142</sup> Cs | <sup>143</sup> Cs |
|                   | <sup>127</sup> Xe |                   |                   |                   |                   |                   | <sup>133</sup> Xe |                   | <sup>135</sup> Xe | <sup>136</sup> Xe | <sup>137</sup> Xe | <sup>138</sup> Xe | <sup>139</sup> Xe | <sup>140</sup> Xe | <sup>141</sup> Xe | <sup>142</sup> Xe |
| 125               | <sup>126</sup>    |                   | 128               | <sup>129</sup>    | 130               | <sup>131</sup>    | 132               | 133               | <sup>134</sup>    | <sup>135</sup>    | <sup>136</sup>    | 137               | 138               | <sup>139</sup>    | 140               | 141               |
|                   |                   |                   | <sup>127</sup> Te | <sup>128</sup> Te | <sup>129</sup> Te | <sup>130</sup> Te | <sup>131</sup> Te | <sup>132</sup> Te | <sup>133</sup> Te | <sup>134</sup> Te | <sup>135</sup> Te | <sup>136</sup> Te | <sup>137</sup> Te | <sup>138</sup> Te |                   |                   |
|                   | <sup>124</sup> Sb | <sup>125</sup> Sb | <sup>126</sup> Sb | <sup>127</sup> Sb | <sup>128</sup> Sb | <sup>129</sup> Sb | <sup>130</sup> Sb | <sup>131</sup> Sb | <sup>132</sup> Sb | <sup>133</sup> Sb | <sup>134</sup> Sb | <sup>135</sup> Sb | <sup>136</sup> Sb | <sup>137</sup> Sb | <sup>138</sup> Sb | <sup>139</sup> Sb |
| <sup>122</sup> Sn | <sup>123</sup> Sn | <sup>124</sup> Sn | <sup>125</sup> Sn | <sup>126</sup> Sn | <sup>127</sup> Sn | 128Sn             | <sup>129</sup> Sn | <sup>130</sup> Sn | <sup>131</sup> Sn | <sup>132</sup> Sn | <sup>133</sup> Sn | <sup>134</sup> Sn | <sup>135</sup> Sn | <sup>136</sup> Sn | <sup>137</sup> Sn |                   |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |

27.06.2019 | IKP TU Darmstadt | Philipp R. John | 14

# Identification target-like recoils



|   |                   | <sup>192</sup> TI | <sup>193</sup> TI | <sup>194</sup> TI | <sup>195</sup> TI | <sup>196</sup> TI | <sup>197</sup> TI | <sup>198</sup> TI | <sup>199</sup> TI | <sup>200</sup> TI | <sup>201</sup> TI | <sup>202</sup> TI | <sup>203</sup> TI | <sup>204</sup> TI | <sup>205</sup> TI | 2 |
|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|
|   | <sup>190</sup> Hg | <sup>191</sup> Hg | <sup>192</sup> Hg | <sup>193</sup> Hg | <sup>194</sup> Hg | <sup>195</sup> Hg | <sup>196</sup> Hg | <sup>197</sup> Hg | <sup>198</sup> Hg | <sup>199</sup> Hg | <sup>200</sup> Hg | <sup>201</sup> Hg | <sup>202</sup> Hg | <sup>203</sup> Hg | <sup>204</sup> Hg | 2 |
|   | <sup>189</sup> Au | <sup>190</sup> Au | <sup>191</sup> Au | <sup>192</sup> Au | <sup>193</sup> Au | <sup>194</sup> Au | <sup>195</sup> Au | <sup>196</sup> Au | <sup>197</sup> Au | <sup>198</sup> Au | <sup>199</sup> Au | <sup>200</sup> Au | <sup>201</sup> Au | <sup>202</sup> Au | <sup>203</sup> Au | 2 |
|   | <sup>188</sup> Pt | <sup>189</sup> Pt | <sup>190</sup> Pt | <sup>191</sup> Pt | <sup>192</sup> Pt | <sup>193</sup> Pt | <sup>194</sup> Pt | <sup>195</sup> Pt | <sup>196</sup> Pt | <sup>197</sup> Pt | <sup>198</sup> Pt | <sup>199</sup> Pt | <sup>200</sup> Pt | <sup>201</sup> Pt | <sup>202</sup> Pt | 2 |
|   | <sup>187</sup> lr | <sup>188</sup> lr | <sup>189</sup> lr | <sup>190</sup> lr | <sup>191</sup> lr | <sup>192</sup> lr | <sup>193</sup> lr | <sup>194</sup> lr | <sup>195</sup> lr | <sup>196</sup> lr | <sup>197</sup> lr | <sup>198</sup> lr |                   | <sup>200</sup> lr | <sup>201</sup> lr |   |
|   | <sup>186</sup> Os | <sup>187</sup> Os | <sup>188</sup> Os | <sup>189</sup> Os | <sup>190</sup> Os | <sup>191</sup> Os | <sup>192</sup> Os | <sup>193</sup> Os | <sup>194</sup> Os |                   | <sup>196</sup> Os | <sup>197</sup> Os |                   | <sup>199</sup> Os | <sup>200</sup> Os |   |
|   | <sup>185</sup> Re | <sup>186</sup> Re | <sup>187</sup> Re | <sup>188</sup> Re | <sup>189</sup> Re | <sup>190</sup> Re | <sup>191</sup> Re | <sup>192</sup> Re |                   | <sup>194</sup> Re | <sup>195</sup> Re |                   |                   |                   |                   |   |
|   | <sup>184</sup> W  | <sup>185</sup> W  | <sup>186</sup> W  | <sup>187</sup> W  | <sup>188</sup> W  | <sup>189</sup> W  | <sup>190</sup> W  |                   |                   |                   |                   |                   |                   |                   |                   |   |
| 8 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |   |

27.06.2019 | IKP TU Darmstadt | Philipp R. John | 15

# Identification target-like recoils Isomeric states



|   |                   | <sup>192</sup> TI | <sup>193</sup> TI | <sup>194</sup> TI | <sup>195</sup> TI | <sup>196</sup> TI | <sup>197</sup> TI | <sup>198</sup> TI | <sup>199</sup> TI | <sup>200</sup> TI | <sup>201</sup> TI |                   |                   |                   |                   |  |
|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|   | <sup>190</sup> Hg | <sup>191</sup> Hg | <sup>192</sup> Hg | <sup>193</sup> Hg | <sup>194</sup> Hg | <sup>195</sup> Hg | <sup>196</sup> Hg | <sup>197</sup> Hg | <sup>198</sup> Hg | <sup>199</sup> Hg | <sup>200</sup> Hg |                   |                   | <sup>203</sup> Hg |                   |  |
|   | <sup>189</sup> Au | <sup>190</sup> Au | <sup>191</sup> Au | <sup>192</sup> Au | <sup>193</sup> Au | <sup>194</sup> Au | <sup>195</sup> Au | <sup>196</sup> Au |                   | <sup>198</sup> Au | <sup>199</sup> Au | <sup>200</sup> Au | <sup>201</sup> Au | <sup>202</sup> Au | <sup>203</sup> Au |  |
|   | <sup>188</sup> Pt | <sup>189</sup> Pt | <sup>190</sup> Pt | <sup>191</sup> Pt | <sup>192</sup> Pt | <sup>193</sup> Pt | <sup>194</sup> Pt | <sup>195</sup> Pt | <sup>196</sup> Pt | <sup>197</sup> Pt | <sup>198</sup> Pt | <sup>199</sup> Pt | <sup>200</sup> Pt | <sup>201</sup> Pt | <sup>202</sup> Pt |  |
|   | <sup>187</sup> lr | <sup>188</sup> lr | <sup>189</sup> lr | <sup>190</sup> lr | <sup>191</sup> lr | <sup>192</sup> lr | <sup>193</sup> lr | <sup>194</sup> lr | <sup>195</sup>  r | <sup>196</sup> lr | <sup>197</sup> lr | <sup>198</sup> lr |                   | <sup>200</sup> lr | <sup>201</sup>  r |  |
|   | <sup>186</sup> Os | <sup>187</sup> Os | <sup>188</sup> Os | <sup>189</sup> Os | <sup>190</sup> Os | <sup>191</sup> Os | <sup>192</sup> Os | <sup>193</sup> Os | <sup>194</sup> Os |                   | <sup>196</sup> Os | <sup>197</sup> Os |                   | <sup>199</sup> Os | <sup>200</sup> Os |  |
|   | <sup>185</sup> Re | <sup>186</sup> Re | <sup>187</sup> Re | <sup>188</sup> Re | <sup>189</sup> Re | <sup>190</sup> Re | <sup>191</sup> Re | <sup>192</sup> Re |                   | <sup>194</sup> Re | <sup>195</sup> Re |                   |                   |                   |                   |  |
|   | <sup>184</sup> W  | <sup>185</sup> W  | <sup>186</sup> W  | <sup>187</sup> W  | <sup>188</sup> W  | <sup>189</sup> W  | <sup>190</sup> W  |                   |                   |                   |                   |                   |                   |                   |                   |  |
| r |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |  |

27.06.2019 | IKP TU Darmstadt | Philipp R. John | 16

## Conclusions



- The Data at TU Darmstadt is only 1.5 days of the experiment
- The Grid transfer is not yet available at TU Darmstadt, IT of TU Darmstadt is working on it
- Cube and Hypercube sorting developed for the available data, However, we need to apply to the full experiment
- Experiment worked fine, huge effort
- ► No obvious lines for <sup>190</sup>W yet!
- ► Identification of isomeric decays ⇒ cleaner gating
- Identification of many new  $\gamma$ -ray transitions
- Obviulsly, no Replay yet, touch the tracking parameters