Lifetime measurements in the even-even $^{\text{104-108}}\text{Cd}$

Marco Siciliano

Irfu/CEA, Université de Paris-Saclay

NUSPIN 2019
Annual AGATA collaboration meeting
Orsay, 24-28 June 2019
Longest isotopic chain between two experimentally accessible doubly-magic nuclei.

Unique opportunity for systematic studies of the basic nuclear properties.

Balance between the closed-shell effects and evolving collectivity.
Z=48 PHYSICS CASE

Vibrational…?

Vibrational-like character

Z=48 PHYSICS CASE
Vibrational…?

Vibrational-like character

M. Siciliano – Lifetime measurements in the even-even $^{104-108}$Cd
Z=48 PHYSICS CASE
Vibrational...?

Vibrational-like character

M. Siciliano – Lifetime measurements in the even-even $^{104-108}$Cd
P.E. Garrett and J.L. Wood have proposed a reinterpretation of the stable Cd nuclei:

- Shape coexistence between rotational deformed structures

Reduced transition probabilities and quadrupole moments

Unobserved transitions between the three-, two- and one-phonon states

Courtesy of P.E. Garrett
Z=48 PHYSICS CASE

Vibrational…?
Deep-inelastic reaction to investigate the neutron-deficient Cd isotopes:

- Stable beam with **higher intensity** than previous experiment with radioactive beams

Beam: 106Cd @ 770 MeV

Target: 92Mo 0.715 mg/cm2

Degrader: 24Mg 1.6 mg/cm2
RESULTS

Lifetimes in 106Cd

- Verify the experimental procedure
- Lifetime measurement via both DDCM and DCM to check the real target-degrader distances (i.e. plunger zero-offset)

$\tau_{\text{NNDC}}(2^+) = 10.5(1)$ ps

$\tau_{\text{DCM}}(2^+) = 10.7(4)$ ps

$\tau_{\text{DDCM}}(2^+) = 10.4(2)$ ps

M. Siciliano, Nuovo Cimento C 40 (2017), 84
RESULTS
Lifetimes in 106Cd

$$R_{TOT}(\tau) = \frac{\sum_{j=1}^{n} I_{u,j}}{\sum_{j=1}^{n} (I_{u,j} + I_{s,j})} = \sum_{j=1}^{n} n_j e^{-\frac{1}{\tau} \frac{x_j}{\beta_{TD} c}}$$

$\tau_{NNDC}(2^+) = 10.5(1)$ ps

$\tau_{TOT}(2^+) = 10.1(3)$ ps

RESULTS
Lifetimes in ^{108}Cd

$\tau_{\text{NNDC}}(2^+) = 9.9(1) \text{ ps}$

$\tau_{\text{TOT}}(2^+) = 10.1^{+2.8}_{-2.0} \text{ ps}$

RESULTS

Lifetimes in $^{104-108}$Cd

\[\tau_{\text{lit}}(2^+) = 8.5(12) \text{ ps} \]

\[\tau_{\text{TOT}}(2^+) = 10.0^{+0.6}_{-0.5} \text{ ps} \]

\[\tau_{\text{lit}}(4^+) = 1.5(5) \text{ ps} \]

\[\tau_{\text{TOT}}(4^+) = 1.44^{+0.33}_{-0.24} \text{ ps} \]

M. Siciliano – Lifetime measurements in the even-even $^{104-108}$Cd
RESULTS
Reduced Transition Probability

(a) $B(E2; 4^+ \rightarrow 2^+)$ [e2 fm4]

(b) $B(E2; 2^+ \rightarrow 0^+)$ [e2 fm4]

Neutrons vs. $B(E2)$ values for $^{104-108}$Cd.

- Adopted
- Milner1969
- Esat1976
- Najib1977
- Pitarinen1993
- Lobach1999
- Muller2001
- Harissopulos2001
- Boalert2007
- Ekstrom2009
- Siciliano2019
THEORETICAL INTERPRETATION
Quadrupole-Pairing Interplay

Large-scale shell-model calculation, performed by the Strasbourg group, to explain the systematic of the reduced transition probability in the neutron-deficient Cd isotopes.

- Realistic potential: N3LO (CD-Bonn and AV18 provide same results)
- Renormalization: 30% for quadrupole force, 40% for pairing force
- Monopole-free
 ^{100}Sn single-particle spectrum, given by GEMO
- Full gds valence space
 1p-1h excitations in the $(g_{9/2})^\pi$

Deformed structures
CONCLUSIONS

• Deep-inelastic collisions are a powerful tool for populating the region close to 100Sn. Thanks to the direct population of the states, electromagnetic properties of the low-lying states can be investigated.

• **Lifetime of 2^+_1 states** has been measured in the even-even $^{104-108}$Cd. **Lifetime of 4^+_1 state** has been measured for 104Cd. The results confirm the values obtained in previous experiments.

• The extracted B(E2) values have been compared with LSSM calculations in the full gds valence space to explain the trend of neutron-deficient Cd isotopes.

FUTURE...?

Further investigation of neutron-deficient Cd nuclei via Coulomb excitation or lifetime measurements, to study the nature of side bands.
M. Siciliano¹, J.J. Valiente-Dobón¹, A. Goasduff¹, ², ⁴, D. Bazzacco⁴, A. Lopez-Martens⁶, E. Clément⁷, G. Benzonî⁸, T. Braunroth⁹, N. Cieplicka-Oryńczak⁸,¹⁰, F.C.L. Crespi¹¹, G. de France⁷, M. Doncel¹², S. Ertürk¹³, C. Fransen⁹, A. Gadea¹⁴, G. Georgiev⁶, A. Goldkuhle⁹, U. Jakobsson¹⁵, G. Jaworski¹¹,¹⁶, P.R. John²,⁴,¹⁷, I. Kuti¹⁸, A. Lemasson⁷, H. Li¹⁵, T. Marchi¹¹, D. Mengoni²,⁴, C. Michelagnoli⁷,¹⁹, T. Mijatović¹⁰, C. Müller-Gatermann⁹, D.R. Napoli¹, J. Nyberg²¹, M. Palacz¹⁶, R.M. Pérez-Vidal¹⁴, B. Saygi¹,²², D. Sohler¹⁸, S. Szilner²⁰, D. Testov²,⁴, and AGATA collaboration

¹INFN, Laboratori Nazionali di Legnaro, Italy. ²Dipartimento di Fisica e Astronomia, Università di Padova, Italy. ³Irfu/CEA, Université de Paris-Saclay, Gif-sur-Yvette, France. ⁴INFN, Sezione di Padova, Italy. ⁵IPHC, CNRS/IN2P3 Université de Strasbourg, France. ⁶CSNSM, CNRS/IN2P3, Université de Paris-Saclay, Orsay, France. ⁷GANIL, Irfu/CEA/DRF and CNRS/IN2P3, Caen, France. ⁸INFN, Sezione di Milano, Italy. ⁹Institut für Kernphysik, Universität zu Köln, Germany. ¹⁰IFJ, Polska Akademia Nauk, Krakow, Poland. ¹¹Dipartimento di Fisica, Università di Milano, Italy. ¹²Universidad de Salamanca, Spain. ¹³Ömer Halisdemir Üniversitesi, Niğde, Turkey. ¹⁴IFIC, CSIC-Universidad de Valencia, Spain. ¹⁵Institut für Kernphysik, Technische Universität Darmstadt, Germany. ¹⁶HIL, Uniwersytet Warszawski, Warsaw, Poland. ¹⁷Institut für Kernphysik, Technische Universität Darmstadt, Germany. ¹⁸INR, Hungarian Academy of Sciences, Debrecen, Hungary. ¹⁹Institut Laue-Langevin, Grenoble, France. ²⁰Ruder Bošković Institute and University of Zagreb, Zagreb, Croatia. ²¹Institutionen för Fysik och Astronomi, Kärnfysik, Uppsala Universitet, Sweden. ²²Ege Üniversitesi, İzmir, Turkey.

THANKS FOR YOUR ATTENTION
The nuclear reaction takes place in the thin target and then the reaction products are slowed down by the degrader foil. Because of the two different velocities, per each γ-ray transition two components are observed. The γ-ray energy is Doppler corrected for β_u (measured by VAMOS++), so in the spectrum a second under-corrected shifted peak appears.

The relative intensity of the two peaks depends on the target-degrader TOF (β_s, distance) and lifetime.

M. Siciliano – Lifetime measurements in the even-even $^{104-108}$Cd
Information of the shell gap and collectivity evolution can be experimentally obtained from
- the excitation energy of the low-lying states
- the reduced transition probability
Due to the almost symmetric reaction, the recoils energy was at the limit for the identification in the IC.

The identification of the fragments is challenging because of the high atomic number, close to the resolution limit of the IC.

- Empirical corrections to improve the resolution
- A systematic investigation was performed to identify the Z=50 channel

A good estimation for the even-even nuclei yield is given by the efficiency-corrected area of the peak related to $2^+_1 \rightarrow 0_{g.s.}^+$ transition.

- Yields asymmetry for $Z \geq 48$
- Yields symmetry for $Z \leq 46$

M. Siciliano et al., INFN-LNL Annual Report 2017 (2018) 57
The VAMOS++ spectrometer allows the **complete identification** of the reaction products, providing the atomic number \(Z \) and mass \(A \).

- Light ions with \(Z \sim 28 \) were populated via the fusion-fission reaction of the beam with the degrader material.
- Beam-like ions with \(Z \sim 48 \) were obtained via both multi-nucleon transfer reactions and deep-inelastic collisions of the beam with the target.

M. Siciliano et al., INFN-LNL Annual Report 2017 (2018) 57
Theoretical Interpretation
Quadrupole-Pairing Interplay in Sn

- Realistic potential: N3LO (CD-Bonn and AV18 provide same results)
- Renormalization: 30% for quadrupole force, 0-40% for pairing force
- Monopole-free
 101Sn single-particle spectrum, given by GEMO
- Full gds valence space
 2p-2h excitations in the $(g_{9/2})^x$

Pairing force takes its revenge on quadrupole correlation

Results in 108Sn allow to firmly define the pairing force

M. Siciliano – Lifetime measurements in the even-even $^{104-108}$Cd