## **CHARGE-EXCHANGE REACTION**

STUDIES COMBINED WITH HIGH-RESOLUTION

# **Y-RAY SPECTROSCOPY** FOR ASTROPHYSICAL APPLICATIONS

## SHUMPEI NOJI



### Charge-Exchange-Reaction Probes Combined with γ-Ray Coincidences Offer Unique Spectroscopic Opportunities



# Accurate Determination of γ-Ray Energies with High Efficiency by GRETINA Allowed for Unambiguous Extraction of Spin-non-flip, Isospin-flip Transitions



### Excitation-Energy Spectrum was Decomposed into Different Multipoles; Monopole & Dipole Strengths were Successfully Identified



### γ Coincidences Provide More Detailed Information on Excited Residue than is Possible by Charged-Particle Analysis Alone



### CCSNe are Attractive Sites for Improving our Understanding of the Universe, for which Nuclear-Physics Processes Play a Major Role



### Electron-Capture Rates are Derived from GT Transition-Strength Distributions where their Detailed Low-Lying Structures can be Important



20

so theory can reproduce/predict experimental *B*(GT)

### Sensitivity Studies have Identified Nuclei of High Impact on CCSNe, for which Microscopic Calculations were not Available

- Weak-Rate Library has been compiled
  - EC rates from multiple sources (theory & experiment) included in a comprehensive library [1]
- High-sensitivity region has been located
  - ~70 nuclei (out of 8,000+) around N = 50 play an important role in CCSNe [2,3]
    - » Supported by recent studies by A. Pascal et al.
- Few microscopic calculations had existed for high-sensitivity nuclei



- » Represented by single transition with common B(GT) (= 4.6) at an excitation energy
- » Not accounting for Pauli blocking
  - · Overestimating EC rates by an order of magnitude or more
- (*t*,<sup>3</sup>He+γ) reaction on <sup>86</sup>Kr, <sup>88</sup>Sr, <sup>93</sup>Nb
  - (*t*,<sup>3</sup>He) analysis
    - » B(GT) for wide  $E_x (\leq 25 \text{ MeV})$  & high energy resolution ( $\leq 500 \text{ keV}$ )
  - $\gamma$ -ray coincidences with HPGe
    - » More detailed information on transitions to low-lying states





[1] https://groups.nscl.msu.edu/charge\_exchange/weakrates.html
[2] C. Sullivan *et al.*, ApJ **816**, 44 (2016).
[3] R. Titus *et al.*, J. Phys. G **45**, 014044 (2017).

# (*t*,<sup>3</sup>He+γ) Measurements at 115 MeV/*u* were Performed at NSCL/MSU with the S800 Spectrograph & GRETINA

plastic

- Forward kinematics
  - Secondary <sup>3</sup>H beam, 115 MeV/u scintillator + stationary, stable targets, <sup>86</sup>Kr, <sup>88</sup>Sr, <sup>93</sup>Nb (ΔE, TOF)
  - Dispersion-matching beam transport
  - $\Delta E_x \sim 500 \text{ keV}$  (FWHM)
- Missing-mass spectroscopy
  - $d^2 \sigma / d \theta d E_x$ for 0 MeV  $\leq E_x \leq 25$  MeV, 0°  $\leq \theta_{c.m.} \leq 6^\circ$
- γ rays from stopped, excited residues detected by GRETINA





CRD()

**Cathode Readout Drift Chambers** 

### GRETINA's Efficiency & Resolution were Crucial for this Experimental Technique

- Eight GRETINA modules were mounted on one hemisphere
  - Accommodating the special reaction targets
    - » <sup>88</sup>Sr (highly reactive in air; with a target transfer system; 19.6 mg/cm<sup>2</sup>)
    - » <sup>86</sup>Kr (gas; gas handing system; 295 K, 1210 Torr; 20 mg/cm<sup>2</sup>)
  - Solid-angle coverage:  $\sim 1\pi$  sr; photopeak efficiency:  $\sim 4\%$  at 2 MeV
  - No Doppler reconstruction measured  $\gamma$  rays from residues at rest

[1] S. Paschalis *et al.*, NIMA **709** (2013) 44.
[2] D. Weisshaar *et al.*, NIMA **847** (2017) 187.



### Excitation-Energy Spectrum was Decomposed into Different Multipoles; GT Strength Obtained from Extracted Monopole Component was Small



### Analysis of γ Rays Provide Stricter Constraint on GT Strength for Low-Lying States in <sup>88</sup>Rb

- *E<sub>x</sub>* (S800) vs *E<sub>Y</sub>* (GRETINA)
  - Distinct  $E_Y = E_x$  line  $\rightarrow$  Background nearly non-existent, clean gate based on  $E_x$
  - Particle-decay channels open at separation energies ( $S_n \& S_p$ )
    - »  $\gamma$ -ray transitions from states in <sup>88</sup>Rb, as well as <sup>87</sup>Rb and <sup>86</sup>Rb observed
    - » Non observation from <sup>87</sup>Kr: Proton-emission probability from <sup>88</sup>Rb very small
- γ decays from GT states (*E<sub>x</sub>* gated *E*γ spectrum)
  - No significant signals observed from low-lying 1+ states in <sup>88</sup>Rb reachable by GT transitions from <sup>88</sup>Sr
  - Only one count could be attributed to known 1+ state in <sup>88</sup>Rb at 2.231 MeV
    - » From Bayesian analysis: credible interval  $0 \le B(GT) \le 0.022$  with an 86% probability  $E_{...}(^{88}\text{Rb})$



### Shell-Model & QRPA Calculations are Consistent with Experiment; Single-State Approximation Overestimates Strength by 2 Orders of Magnitude

#### Shell model

- <sup>78</sup>Ni core
  - +  $\pi$  particles  $0f_{5/2}$ ,  $1p_{3/2}$ ,  $1p_{1/2}$ ,  $0g_{9/2}$ + v holes  $0g_{7/2}$ ,  $1d_{5/2}$ ,  $1d_{3/2}$ ,  $2s_{1/2}$ ,  $0h_{11/2}$
- NUSHELLX; TBME from jj44pna & CD-Bonn 些 0.1
- Consequences of model-space truncation taken into account [1]

#### QRPA

- Performed using the axially-deformed Skyrme Finite Amplitude Method (FAM) [2,3]
- Extended to odd-*A*, equal-filing approx. [4]
- Theory is consistent w/ experiment in summed B(GT)

| Σ <i>Β</i> (GT)                                      | Exp                              | SM    | QRPA  |
|------------------------------------------------------|----------------------------------|-------|-------|
| <sup>88</sup> Sr<br>( <i>E<sub>x</sub></i> ≤ 10 MeV) | 0.1±0.05                         | 0.12  | 0.14  |
| <sup>86</sup> Kr<br>( <i>E</i> <sub>x</sub> ≤ 5 MeV) | $0.108\substack{+0.063\\-0.108}$ | 0.035 | 0.024 |

- Single-state approximation [B(GT) = 4.6] overestimating by a factor of ~100
- EC rates closer at higher densities, (rates are primarily determined by Σ B(GT), & less sensitive to detailed structure)



- [3] M. T. Mustonen et al., PRC 90, 024308 (2014).
- [4] T. Shafer et al., PRC 94, 055802 (2016).

### EC Rates Based on QRPA are Included in Weak-Rate Library for the Use in Astrophysical Simulations

- New rate table for astrophysical simulations has been developed
  - EC rates calculated on the basis of QRPA framework are included for nuclei in the high-sensitivity region
- CCSN simulations performed with new rates
  - Neutrino-transport code NuLib
    - + General-relativistic, spherically-symmetric hydrodynamics code GR1D
  - · Late-stage evolution of the collapsing star
  - Significant reduction (~14%) in deleptonization with the new rates
- Potential multi-messenger signals useful for better understanding/modeling CCSNe will be affected
  - Neutrino emission
  - Gravitational-wave emittance



## **Summary & Conclusions**

- Electron captures on nuclei near N = 50 have a large impact on the behavior of core-collapse supernovæ
- Few microscopic calculations had existed for this region for astrophysical simulations
- Gamow-Teller transition strengths [B(GT)] of <sup>88</sup>Sr & <sup>86</sup>Kr (also of <sup>93</sup>Nb) were extracted via (t,<sup>3</sup>He+γ) measurements
- γ-ray coincidences were pivotal in determining low-lying strengths
- Shell-model & QRPA calculations were found capable of reproducing experimental *B*(GT)
- Weak-Rate Library now includes new EC rates based on QRPA, and is ready for the use in astrophysical simulations



### **Acknowledgements**

- NSCL Charge-Exchange Group
  - R. G. T. Zegers, J. C. Zamora<sup>\*</sup> (<sup>88</sup>Sr), B. Gao<sup>\*</sup> (<sup>93</sup>Nb), C. Sullivan<sup>#</sup> (Weak-Rate Library), R. Titus (<sup>86</sup>Kr), S. Lipschutz<sup>#</sup>, J. Schmitt, A. Carls, M. DeNudt, C. Maher, C. Hulquist, D. Bazin, J. Pereira, Sam M. Austin

| arXiv:1906.05934 [nucl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l-ex]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * Postdoc until 2018<br># Graduated in 2018                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental Const: ${}^{88}{ m Sr}(t,{}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | raint on Stellar Electron-Capture Rates from the $He + \gamma$ ) <sup>88</sup> Rb reaction at 115 MeV/u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          |
| <ul> <li>J. C. Zamora,<sup>1,2</sup> R.G.T. Zegers<br/>H.L. Crawford,<sup>4</sup> J. Engel,<sup>5</sup></li> <li>C. J. Guess,<sup>7</sup> S. Lipschutt<br/>S. Noji,<sup>1,2</sup> J. Pereira,<sup>1,2</sup> J.</li> <li><sup>1</sup>National Superconducting Cyclor<br/><sup>2</sup>Joint Institute for Nuclear Astr</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s, <sup>1,2,3</sup> Sam M. Austin, <sup>1,2</sup> D. Bazin, <sup>1</sup> B. A. Brown, <sup>1,2,3</sup> P.C. Bender, <sup>1</sup><br>A. Falduto, <sup>6,2</sup> A. Gade, <sup>1,2,3</sup> P. Gastis, <sup>6,2</sup> B. Gao, <sup>1,2</sup> T. Ginter, <sup>1</sup><br>z, <sup>1,2,3</sup> B. Longfellow, <sup>1,3</sup> A.O. Macchiavelli, <sup>4</sup> K. Miki, <sup>8</sup> E. Ney, <sup>5</sup><br>. Schmitt, <sup>1,2,3</sup> C. Sullivan, <sup>1,2,3</sup> R. Titus, <sup>1,2,3</sup> and D. Weisshaar <sup>1</sup><br>tron Laboratory, Michigan State University, East Lansing, MI 48824, USA<br>ophysics: CEE, Michigan State University, East Lansing, MI 48824, USA                               | Gamow-Teller transitions to <sup>93</sup> Zr<br>its application to the stellar ele<br>B. Gao, <sup>1,2</sup> R.G.T. Zegers, <sup>3,4,5</sup> J. C. J<br>Bender, <sup>3</sup> A. Falduto, <sup>7,4</sup> A. Gade, <sup>3,4,5</sup><br>S. Noji, <sup>3,4</sup> J. Pereira, <sup>3,4</sup> J. Schm                                                                                                                                                                                                                                                                                                                                                                                             | via the <sup>93</sup> Nb(t, <sup>3</sup> He+ $\gamma$ ) rectron-capture rates at Net Zamora, <sup>6,4</sup> Sam A. Austin, <sup>3,4</sup> D. T. P. Gastis, <sup>7,4</sup> C. J. Guess, <sup>8</sup> S. Lip itt, <sup>3,4,5</sup> C. Sullivan, <sup>3,4,5</sup> R. Titus, |
| <sup>3</sup> Departament of Physics and As<br><sup>4</sup> Lawre<br>Departament of Physics and As<br><sup>6</sup> Departament of<br><sup>7</sup> Departament of<br><sup>8</sup> Departame<br>The Gamow-Teller<br>at 115 MeV/u to co<br>between and includin<br>supernovae. The obs<br>and below 10 MeV a<br>from the 2.231-MeV<br>states were identified<br>is more than an ord<br>presently used in astr<br>and quasiparticle ran<br>core-polarization effer<br>effects due to high st<br><sup>4</sup> Lawre<br>Constraints for stellar electron-capture rates on<br>and the implications for core-o<br>R. Titus, <sup>1,2,3</sup> E. Ney, <sup>4</sup> R.G.T. Zegers, <sup>1,2,3,*</sup> Sam M<br>P.C. Bender, <sup>5</sup> B. A. Brown, <sup>1,2,3</sup> C. M. Campbell, <sup>6</sup><br>B. Gao, <sup>7</sup> E. Kwan, <sup>1</sup> S. Lipschutz, <sup>1,2,3</sup> B. Longfellov<br>S. Noji, <sup>1,2</sup> J. Pereira, <sup>1,2</sup> J. Schmitt, <sup>1,2,3</sup> C. Sullivan,<br><sup>1</sup> National Superconducting Cyclotron Laboratory, Michigan State<br><sup>4</sup> Department of Physics and Astronomy, The University of Massachuse<br><sup>6</sup> Lawrence Berkeley National Laboratory, | <sup>86</sup> Kr via the <sup>86</sup> Kr( $t$ , <sup>3</sup> He+ $\gamma$ ) reaction<br>ollapse supernovae<br>. Austin, <sup>1,2</sup> D. Bazin, <sup>1,3</sup> J. Belarge, <sup>1</sup><br>3. Elman, <sup>1,3</sup> J. Engel, <sup>4</sup> A. Gade, <sup>1,2,3</sup><br>, <sup>1,3</sup> E. Lunderberg, <sup>1,3</sup> T. Mijatović, <sup>1</sup><br><sup>2,3</sup> D. Weisshaar, <sup>1</sup> and J. C. Zamora <sup>8</sup><br>the University, East Lansing, MI 48824, USA<br>for the Evolution of the Elements,<br>ing, MI 48824, USA<br>University, East Lansing, MI 48824, USA<br>trolina at Chapel Hill, Chapel Hill, NC 27599, USA<br>is Lowell, Lowell, MA 01854, USA<br>Berkeley, CA 94720, USA | Michigan State University, Ea<br>nese Academy of Sciences, Lan.<br>Michigan State University, Ea<br>Schigan State University, East L<br>boratory, Michigan State Unive<br>ity, Mount Pleasant, Michigan<br>Swarthmore College, Swarthmore<br>d: December 15, 2018)<br>ant roles in core-collapse supernor<br>y on theoretical calculations which<br>easurement of the Gamow-Teller<br>$p(t, {}^{3}\text{He} + \gamma)$ charge-exchange r<br>strength distributions were ext<br>npared with shell-model and qu<br>il features of the experimental<br>the detailed distributions. Con<br>agree very well with those based<br>larger discrepancies were foun<br>he parameterized approximation |                                                                                                                                                                                                                                                                          |

This work was supported in part by the US National Science Foundation Grant Nos. PHY-1565546 (NSCL) & PHY-1430152 (JINA Center for the Evolution of the Elements).

GRETINA was funded by the US DOE Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511 (NSCL) & DOE under grant DE-AC02-05CH11231 (LBNL).