


Charge-Exchange-Reaction Probes Combined with y-Ray Coincidences
Offer Unique Spectroscopic Opportunities
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Accurate Determination of y-Ray Energies with High Efficiency by GRETINA
Allowed for Unambiguous Extraction of Spin-non-flip, Isospin-flip Transitions
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Excitation-Energy Spectrum was Decomposed into Different Multipoles;
Monopole & Dipole Strengths were Successfully Identified

= Multipole Decomposition Analysis
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vy Coincidences Provide More Detailed Information on Excited Residue
than is Possible by Charged-Particle Analysis Alone
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CCSNe are Attractive Sites for Improving our Understanding of the Universe,
for which Nuclear-Physics Processes Play a Major Role

= Accurate & detailed description of NP processes 3
is important for understanding CCSNe Wi

 Contribute to nucleosynthesis
- Stimulate galactic chemical evolution
- Birthplaces of neutron stars & black holes Charge-Exchange

: . : o Reaction
 Predicted emission sites of gravitational waves
LAY
* For understanding evolution of CCSNe % decay
stellar electron captures are a key 2X
- Neutronize stellar core, decrease electron abundance 50— y
. e it &t = / 0.65
- Reduce electron degeneracy pressure (which supports stars) §, 4 Mt oar =10974
 Lead to supernova explosion 20-
5 :
: oS 101 ¢
* Electron captures are dominated £ 5
by B+ Gamow-Teller transitions <
" " " l_

 Accessible via charge-exchange reactions S

» Unlike B decays, no Q-value restrictions , o Gep(t,’He) at 115AMeV
- Well-established, empirical proportionality between | e 5_exp(3':'e,f)sat 140AMeV

CE cross section & GT transition strengths [B(GT)] N - Fit 10 Gexp("He, 7) at 140AMeV

0(0°) = 667B(GT | 5 1 0 1€
o1=0(0%) iGT (@1) G. Perdikakis, SN et al., 12 Mgss1n%rr$ger ,Z\E)O 100200

“ GT unit cross section PRC 83, 054614 (2011).




Electron-Capture Rates are Derived from GT Transition-Strength Distributions
where their Detailed Low-Lying Structures can be Important

= Electron-capture rate is the sum of B(GT) 1.04—
for all the possible transitions s e T 100 glen?
weighted by the phase-space factors 29 e e 1070 glom?
8% 05 Tl T 10° g/em3
Aec(T,p) = const. Sj@(tp) B;(GT) N
ij . . i ......................
......... . 0.0 .
- Gamow-Teller %
. Phase-épace factor transition strength —
» Decreases as Ex becomes higher 0005
» Decreases as temperature (T) & density (p) go up (l’—D‘
- B(GT) to low-lying states & their sum can become o
important at relevant T & p for core collapse g'f‘
0.000 . .
= Experiments target crucial nuclei I
- Many nuclei contribute, majority are unstable o 107 | | |
» Infeasible to measure B(GT) T:g
for even a sizable fraction of all the cases ié o5
- ECs can take place from excited states of mother S
» Impossible to measure such a transition in the laboratory £ /
 Provide experimental information on most crucial cases 00 5 "o 15 20

i i lue (MeV
» Benchmark & constrain theoretical models Q value (MeV)

so theory can reproduce/predict experimental B(GT)



Sensitivity Studies have Identified Nuclei of High Impact on CCSNe,
for which Microscopic Calculations were not Available

* Weak-Rate Library has been compiled
- EC rates from multiple sources (theory & experiment) o
included in a comprehensive library [1] s f HEET
g o Stable
. ngn . . C DFFN
" High-sensitivity region has been located IS = Daa et al
: O = LMSH _
* ~70 nuclei (out of 8,000+) around N = 30 - = fruet & Fuller
play an important role in CCSNe [2,3] 1 ' Raduta et al
» Supported by recent studies by A. Pascal et al. O High-sensitivity ¢
region
* Few microscopic calculations had existed
for high-sensitivity nuclei
- Most relied on a simplistic “Time-integrated relative deleptonization rate”
» Represented by single transition with common B(GT) (= 4.6) 50{ “Most relevant pool -
at an excitation energy NG of auclel during infa
» Not accounting for Pauli blocking S 40, 10-2
« Overestimating EC rates by an order of magnitude or more g 30:
.|§ R I I
3 ' 86 88 93 o A. Pascal et al.,
" (f,3He+y) reaction on 86Kr, 83r, ®3Nb = anxivisos0stia ]
* (t3He) analysis 30 40 50 60 70 80 90
» B(GT) for wide Ex (<25 MeV) & high energy resolution (< 500 keV) Neutron number N
* Y'ray Coincidences Wlth HPGG [1] https://groups.nscl.msu.edu/charge_exchange/weakrates.html

. : : . i [2] C. Sullivan et al., ApJ 816, 44 (2016).
» More detailed information on transitions to low-lying states 3] R. Titus et al., J. Phys. G 45, 014044 (2017).



(t3He+y) Measurements at 115 MeV/u were Performed at NSCL/MSU
with the S800 Spectrograph & GRETINA

Forward kinematics plastic

- Secondary 3H beam,115 MeV/u  scintillator
+ stationary, stable targets, 8K, 88Sr, 93Np (45 TOF

Dispersion-matching beam transport
+ AEx ~ 500 keV (FWHM)

Missing-mass spectroscopy
« d2o/dBdEx
for O MeV = Ex<25 MeV, 0° < Bcm. <6°

Y rays from stopped, excited residues
detected by GRETINA

Cathode Readout Drift Chambers
(CRDCs)

X, x, ¥, y)

)

3H 3H
beam ejecﬁle

115 MeV/u
~107 cps, >99%



GRETINA’s Efficiency & Resolution
were Crucial for this Experimental Technique

= Eight GRETINA modules were mounted on one hemisphere

Accommodating the special reaction targets

» 883r (highly reactive in air; with a target transfer system; 19.6 mg/cm2)

» 86Kr (gas; gas handing system; 295 K, 1210 Torr; 20 mg/cm?)

Solid-angle coverage: ~111 sr; photopeak efficiency: ~4% at 2 MeV

No Doppler reconstruction — measured y rays from residues at rest

[1] S. Paschalis et al., NIMA 709 (2013) 44.
[2] D. Weisshaar et al., NIMA 847 (2017) 187.

Y
- .
3H 3H
beam ejecﬁle

Target transfer
system for 88Sr



Excitation-Energy Spectrum was Decomposed into Different Multipoles;
GT Strength Obtained from Extracted Monopole Component was Small

= Multipole Decomposition Analysis e Data 88Sr(t,3He), E=‘9 115_Moeg;l;1
+ ¥ B(GT) = 0.10 = 0.05 for Ex< 10 MeV 2| AL S
o WmAL=2
- Significantly smaller than 1

90Zr — 0Y, for Ex< 10 MeV
» 2 B(GT) =0.7 £ 0.1 (stat.) £ 0.1 (sys.)
« 10g9/2 occupation: 0.7 for 88Sr; 1.0 for 99/Zr
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Analysis of y Rays Provide Stricter Constraint
on GT Strength for Low-Lying States in 8Rb

" £, (S800) vs E, (GRETINA)

» Distinct Ey = Ex line = Background nearly non-existent, clean gate based on Ex

- Particle-decay channels open at separation energies (Sn & Sp)
» y-ray transitions from states in 88Rb, as well as 8’Rb and 86Rb observed
» Non observation from 87Kr: Proton-emission probability from 8Rb very small

= y decays from GT states (Ex gated Ey spectrum)

 No significant signals observed from low-lying 1+ states in 88Rb reachable by GT transitions from 88Sr

« Only one count could be attributed to known 1+ state in 8Rb at 2.231 MeV
» From Bayesian analysis: credible interval 0 < B(GT) < 0.022 with an 86% probability £ (¢RDb)

S S S ="2.231+0.422 MeV
8 —r——A e 3; e 2.4 - -
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- 1 24
= +'Rb =
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Shell-Model & QRPA Calculations are Consistent with Experiment;
Single-State Approximation Overestimates Strength by 2 Orders of Magnitude

= Shell model

 78Ni core
+ nuparticles Ofsi2, 1p3r2, 1p112, 0gos2
+ v holes 0g7r2, 1dsi2, 1d32, 25172, 01172

« NUSHELLX; TBME from jj44pna & CD-Bonn Y 0.1-

- Consequences of model-space truncation
taken into account [1]

* QRPA

- Performed using the axially-deformed

Skyrme Finite Amplitude Method (FAM) [2,3]

- Extended to odd-A, equal-filing approx. [4]

= Theory is consistent w/ experiment
in summed B(GT)

88Sr

(Ec<10 Mey) 0-1¥005 012 0.4
86

(Ex < SKK/IeV) 0.10873%: 0.035 0.024

 Single-state approximation [B(GT) = 4.6]

overestimating by a factor of ~100
- EC rates closer at higher densities,

0.2 : : : : :
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(rates are primarily determined by 2 B(GT),

& less sensitive to detailed structure)

[1] I. Towner, NPA 444 (1985) 2.
[2] P. Avogadro & T. Nakatsukasa, PRC 84, 014314 (2011).
[3] M. T. Mustonen et al., PRC 90, 024308 (2014).
[4] T. Shafer et al., PRC 94, 055802 (2016).



EC Rates Based on QRPA are Included in Weak-Rate Library
for the Use in Astrophysical Simulations

* New rate table for astrophysical simulations
has been developed

N e
« EC rates calculated on the basis of QRPA framework & GhERTE
are included for nuclei in the high-sensitivity region 5 - oStable
5 et
5 = LMSH
o

= Pruet & Fuller

= Suzuki & Honma
Raduta et al.

- No rate

= QRPA

60 70 80 90 100 110
bn number N

= CCSN simulations performed with new rates

* Neutrino-transport code NuLib 0
+ General-relativistic, spherically-symmetric
hydrodynamics code GR1D

- Late-stage evolution of the collapsing star

- Significant reduction (~14%) in deleptonization _
with the new rates 0.40.

— Oiriginal EC rate table
— New table with QRPA rates |

Yy

= Potential multi-messenger signals useful
for better understanding/modeling CCSNe
will be affected
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Summary & Conclusions

Electron captures on nuclei near N =50

have a large impact on the behavior of core-collapse supernovee

Few microscopic calculations had existed for this region

for astrophysical simulations

Gamow-Teller transition strengths [B(GT)] of 88Sr & 86Kr (also of 23Nb) were extracted

via (t,3He+y) measurements

Yy-ray coincidences were pivotal
In determining low-lying strengths

Shell-model & QRPA calculations
were found capable of reproducing
experimental B(GT)

Weak-Rate Library now includes
new EC rates based on QRPA,
and is ready for the use

In astrophysical simulations

Proton number Z

https://groups.nscl.msu.edu/charge_exchange/weakrates.html

|:| Stable
‘mFFN
= Oda et al.
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