

High-resolution γ-ray spectroscopy at the Legnaro National Laboratories

Daniele Mengoni

Daniele Mengoni Università di Padova e INFN

for the GALILEO collaboration

High-resolution y-ray spectroscopy

source: http://home.infn.it/it/approfondimenti/

SPES Cyclotron (2016)

Stable Beams at LNL Legnaro:

Large GammaRay Arrays at LNL

- How does the nuclear force depend on varying proton-to-neutron ratios?
- How are complex nuclei built from their basic constituents?
- What is the effective nucleon-nucleon interaction
- Provide nuclear structure input to other fields like nuclear astrophysics
- Collectivity and shell model
- Isospin symmetries
- Isospin mixing in N=Z nuclei
- How does shell structure change far away from stability

Large GammaRay Arrays at LNL

- How does the nuclear force depend on varying proton-to-neutron ratios?
- How are complex nuclei built from their basic constituents?
- What is the effective nucleon-nucleon interaction
- Provide nuclear structure input to other fields like nuclear astrophysics
- Collectivity and shell model
- Isospin symmetries
- Isospin mixing in N=Z nuclei
- How does shell structure change far away from stability

Current array: GALILEO

- 25 HPGe CS detectors
- Angles: $90^{\circ}/60^{\circ}$, 152° , 129° , 119°
- at 22.5cm; ϵ ~2.4% at 1332.5 keV
- FWHM at 1332.5 keV < 2.4 keV
- Trigger-less mode
- Typical operational rate ${\sim}20~kHz/det$
- Common clock synchronization
- Local data processing

10 GALILEO triples

New triple cluster out of the EUROBALL capsules.

Decay-spectroscopy campaign

Daniele Mengoni

High-resolution γ-ray spectroscopy

NUSPIN2019

GALILEO

lifetime

Galileo Phase 2 (very soon), Tripple Clusters

- Physics program driven configuration: 10 GTC backward angles
- Efficiency ~7.5%, PT~60%

Galileo γ -ray spectrometer

Galileo Galilei lived and worked in Padova 1592-1610

GAILILEVS GAILILEVS MATHVS:

A work of Jacopo Tintoretto

GAILILEVS GAILILEVS MATHVS:

A work of Jacopo Tintoretto

azion

GALILEO digital electronics

- → HPGe, AC, Ancillary digitized
- → Branches are sync by GTS
- → Trigger-less operation
- → 240 channels available (<u>112 for EUCLIDES</u>)
- → Typical rate ~ 20 kHz/det
- → Max rate ~ 50 kHz/det

SPIDER/TRACE use the same infrastructure

EUCLIDES

Light Charger particle Si-ball array

- Channel selection
- Enhanced resolving power of GALILEO
- Correction for Doppler Effect
- 80% of angular coverage
- ϵ(α)~40%*; ϵ(p)~60%*
- Plunger configuration
- 3 out of 4 experimet rely on EUCLIDES

* reaction-dependent

D. Testov, D. Mengoni, A. Goasduff et al., Eur. Phys. J. A (2019) 55 47

- Telescope technique (ΔE -E and ...PSA)
- 40 Δ E-E telescopes pent and hex shape
- Thickness 150 μ m (Δ E) 1000 μ m (E) area \sim 10 cm²
- Lab resolution 50 keV (ΔE) 25 keV (E)
- Trigger less operation
- New compact electronics

GALIE FO

 5 the most forward positioned telescopes are segmented in 4 sectors each: higher count rate, better correction for Doppler Effects

EUCLIDES Si-ball detector

Full kinematic reconstruction

Neutron Wall

- Enhanced resolving power of GALILEO
- liquid scintillator (BC501A) ${\sim}150$ liters
- Number of detectors: 45
- Mounted at 0° (forward hemisphere)
- Target to detector face distance: 51 cm.25% of angular coverage
- Probability to miss-interpret γ -ray as a neutron: $\leq 10^{-3}$

Credits: Grzegorz Jaworski A. Lonardi, Master thesis (2015)

Neutron Wall

- Three types of signals for each of them: QVC, TOF, ZCO
- Preselected neutron condition provided to the trigger
- VME/Digital electronics, depending on the channel availability

Credits: Grzegorz Jaworski A. Lonardi, Master thesis (2015)

Science campaign

¹²C(45 MeV) + ²⁴Mg Boso, Testov, Lenzi, Recchia et al MED in mirror nuclei A=31

Large nuclear V_{B} contribution in the *fp* shell nuclei. In the *sd*? High-spin states in mirror 31P and 31S B(E1) strength via lifetime J>13/2 states not yet observed in 31S

Under analysis, but higher spins already visible.

... On mass A=23, A.Boso et al., PRL 121 (2018) 032502 MA Bentley and SM Lenzi, Progr.Part. and Nuc.Phys. 59 (2007) 497

Daniele Mengoni

High-resolution *γ*-ray spectroscopy

NUSPIN2019

¹²C(45 MeV) + ²⁴Mg Boso, Testov, Lenzi, Recchia et al MED in mirror nuclei A=31

Large nuclear $V_{_{\rm B}}$ contribution in the *fp* shell nuclei. In the *sd*?

³¹P - Gated on 1266 - 2148 - 3040 keV

Spectroscopy³¹S and ³¹P

- Corrections of spin-parity assignment from previous works
- Systematics of transitions and levels known previously

Line
Alia
Bit
Sto
Bit
Sto
Bit
Bit</

Shell model calculations

- MED description A=31 for high spin states $\pi+$ and $\pi-$
- USD interaction for $\pi +$
- First description of MED in the cross-shell excitation, A=31, 35
- Breaking the ²⁸Si core allows reliable description of A=31, 35 MED values π (a few particles in sdfp)
- V_b terms includes all the orbitals from the valence space $(s_{1/2}d_{3/2}f_{7/2}p_{3/2})$

reproduce MED

.. UII IIIdoo A-20, A.DUOU CL dI., FRL 121 (2010) UO2JUZ

1/2

MA Bentley and SM Lenzi, Progr.Part. and Nuc.Phys. 59 (2007) 497

32S+ 28Si → GDR in 60Zn S.Ceruti, G.Gosta, F.Camera et al

ISOSPIN mixing

- Coulomb interaction breaks the isospin symmetry⇒ Isospin Mixing
- E1 transitions (as Giant Dipole Resonance decay) in N=Z nuclei are sensitive to the degree of mixing
- Isospin mixing decreases as the excitation energy increases
- Comparison of yield of GDR in a N=Z nucleus to the one of N>Z allow to extract the isospinmixing probability

High-resolution γ -ray spectroscopy

The experiment

- Tuning of the statistical model: Study of residual nuclei (GALILEO+EUCLIDES)
- Zn-60 data are reproduced by using a standard statistical model
- GDR strength in 60Zn, clearly inhibited Evidence of E1 selection rule How much?? Isospin Mixing

High-resolution γ-ray spectroscopy

BE2 strengths around Sn-100

Daniele Mengoni

High-resolution γ -ray spectroscopy

NUSPIN2019

ISOSPIN Mix.

SPES

lifetime

Many-body quantal systems

P. Doornenbal et al. Phys. Rev. C 90, 061302(R) (2014)

58Ni@250MeV+58Ni → (116Ba)* D.Testov, S.Bakes et al.

- Tracking the change in deformation of Sn by looking at Sb (9/2+ states)
- Known lifetime in 109Sb and 112Te as reference measurement
- Analysis on the state of interest in 109Sb and 110Te. New states in 110Te already measured.

C. Müller-Gatermann at al., NIMA 920, (2019) 95.

D. Testov et al., EPJA 55, (2019) 47

Daniele Mengoni

High-resolution γ -ray spectroscopy

NUSPIN2019

Resolving power

A closer look to tellurium

lifetime of 2+ state

GALILEO

aries N

Neutron Wall

lifetime

Symmetry conserving configuration mixing calculations (SCCM) based on the Gogny D1S energy density functional axial quadrupole and octupole degrees of freedom

Daniele Mengoni

High-resolution γ -ray spectroscopy

NUSPIN2019

SPES facility

Second generation ISOL facility: pure and intense beams

 $10^{\rm 13}~{\rm fissions/s}$

UCx Target (... + not fissile also foreseen)

SPES facility

Cutting-edge detection system

Expected more than $1\pi \rightarrow$ more than 10% eff in singles

AGATA+PRISMA Configuration

Zero degree Configuration

High-resolution y-ray spectroscopy

Cutting-edge detection system

Daniele Mengoni

High-resolution γ -ray spectroscopy

NUSPIN2019

- Intensive stable beams provided by LNL Legnaro accelerators have triggered intensive research of nuclear structure using GASP, EUROBALL, CLARA, AGATA and GALILEO arrays
- $\bullet\,$ GALILEO (Phase I) consists of 25 HPGe Compton suppressed detectors $\epsilon\,{\sim}2.4\%\,$ FWHM at < 2.4 keV at 1332.5 keV
- Number of different ancillary detectors (EUCLIDES, [Neutron Wall], TRACE, SPIDER, plunger, RFD) leads to variety of nuclear studies studies: >20 experiments
- Photon efficiency of GALILEO will be enhanced after an update with Tripple clusters (very soon)
- SPES RIBs will further enriched the physics cases at LNL
- In the near future, even more performing setup will be available (AGATA, NEDA, MUGAST, etc)
- Galileo Galilei worked at Padova University from 1592 1610

GALIE FO

lifetime

Credits to GALILEO collaboration:

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

GALLEO

Credits to GALILEO collaboration:

¹ Dipartimento di Fisica e Astronomia and INFN, Sezione di Padova, Padova, Italy.

² INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy.

- ³ Dipartimento di Fisica dell'Università di Milano e Sezione INFN, Milano, Italy.
- ⁴ National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
- ⁵ KTH Royal Institute of Technology, Stockholm, Sweden
- ⁶ Ruder Boskovic Institute, Zagreb, Croatia.
- ⁷ Institut Pluridisciplinaire Hubert CURIEN (IPHC), Strasbourg, France.
- ⁸ The University of Liverpool, UK

⁹ Departamento de Ingeniería Elctrica, Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Spain.

- ¹⁰ Institut für Kernphysik, Technische Universität Darmstadt, Germany.
- ¹¹ University of Oslo
- ¹² Università degli Studi and INFN Sezione di Firenze, Florence, Italy.
- ¹³ HIL, Poland.
- ¹⁴ Ege University, Faculty of Science, Department of Physics, Izmir, Turkey.
- ¹⁵ University of Surrey
- ¹⁶ Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
- ¹⁷ also at University of Surrey, Department of Physics, UK

..., ...,

TRACE

TRACE: a highly-segmented Silicon detector for light charged particles emitted in fusion evaporation and direct nuclear reactions

Identification of $A{\sim}10$ mass ions at low kinetic energy, by PSA analysis

Experimental setup - TRACE

Eur. Phys. J. A 54 209 (2018)

credits: N. Cieplicka-Oryńczak

Reaction and detection

• To produce low energy Li, Be, B, C fragments we used:

37 Cl beam (186 MeV, 1pnA) + 12 C target (200 µm)

- The nuclei of interest, target-like products (Li, Be, B, C ...) of mass A~10, are scattered at ~ 40° - 60° . The kinetic energy of these products varies from a few MeV to a few tens of MeV.
- Measurements of the energy, position, mass and charge: Pulse Shape Analysis of the signals from the TRACE detector

Experimental setup - TRACE Eur. Phys. J. A 54 209 (2018)

credits: N. Cieplicka-Oryńczak

Experimental setup – TRACE

Experimental setup - TRACE

Eur. Phys. J. A 54 209 (2018)

GALLEO

credits: N. Cieplicka-Oryńczak

Identification matrices

GALIE FO

lifetime

Experimental setup - TRACE Eur. Phys. J. A 54 209 (2018)

Figure of merit

Li isotopes: identification possible down to 20 MeV

$$FoM = \frac{C_2 - C_1}{FWHM_1 + FWHM_2}$$

Be isotopes: identification possible down to 29 MeV

Silicon PIe DEtectoR

- M. Rocchini Phys.Scr. 92, 074001 (2017)
- Independent sectors, 8 strips + guard ring
- Detector thickness \sim 300 μ m, dead layers \sim 50 nm in the junction (front) side and \sim 350 nm in the ohmic (rear) side
- Cone configuration (7 sectors) at backward angles: 8.5 cm from the target $\Omega/4\pi = 17.3\%$

Coulomb excitation

Coulomb excitation

Plunger

C. Müller-Gatermann et al.,

Nucl. Inst.&Meth. A 920 95 (2019)

- Very compact design of the otor (LPS-24) 24 mm × 33 mm × 20mm
- Target is moving with respect to the fixed stopper
- active feedback system to compensate for beam induced changes of the target to degrader distance
- Motor (LPS-24) distance range 15 mm
- Resolution of the position sensor 20 nm
- Only one HPGe at 90° (below the motor) is shadowed
- guarantees the compatibility to ancillary detectors, e.g. EUCLIDES

Plunger

C. Müller-Gatermann et al.,

Nucl. Inst.&Meth. A 920 95 (2019)

- Very compact design of the otor (LPS-24) 24 mm x 33 mm x 20mm
- Target is moving with respect to the fixed stopper
- active feedback system to compensate for beam induced changes of the target to degrader distance
- Motor (LPS-24) distance range 15 mm
- Resolution of the position sensor 20 nm
- Only one HPGe at 90° (below the motor) is shadowed
- guarantees the compatibility to ancillary detectors, e.g. EUCLIDES

Recoil Filter Detector

- measures evaporation residues in coincidence with $\gamma\text{-rays}$
- Angular coverage $1.5^\circ\mbox{-}8.9^\circ$ at the distance
- 0.5 2 μ m aluminised Mylar foil; ions hitting the foil knock out electrons, which are then accelerated by the tension of 20 kV nd focus onto a thin, fast plastic scintillator mounted on a photomultiplier.
- γ-recoil efficiency is 20-50%
- Correction for Doppler Effects for recoils $\beta \sim 5\%$
- estimation of a lifetime of highly excited states in the fs range
- possibility of a coupling to other ancillary devices: EUCLIDES/plunger.

Recoil Filter Detector

- measures evaporation residues in coincidence with $\gamma\text{-rays}$
- Angular coverage $1.5^\circ\mbox{-}8.9^\circ$ at the distance
- 0.5 2 μ m aluminised Mylar foil; ions hitting the foil knock out electrons, which are then accelerated by the tension of 20 kV nd focus onto a thin, fast plastic scintillator mounted on a photomultiplier.
- γ-recoil efficiency is 20-50%
- Correction for Doppler Effects for recoils $\beta \sim 5\%$
- estimation of a lifetime of highly excited states in the fs range
- possibility of a coupling to other ancillary devices: EUCLIDES/plunger.

Science campaign

