

### Naomi Marchini

Università di Camerino and INFN Sezione di Firenze





### **Internal Conversion Coefficients**

• Experimentally we obtain: 
$$\alpha_K(\Omega L) = \frac{I_K(\Omega L)}{I_{\gamma}(\Omega L)} \cdot \frac{\eta_{\gamma}^{abs}}{\eta_e^{abs}}$$

• Compare the experimental  $\alpha_{\kappa}(\Omega L)$  value with the theoretical  $\alpha_{\kappa}(\Omega L)$  values for different multipolarities to find a correct parity of the level



Assign level parity

### <u>Electric Monopole Transitions (E0) $\Delta J=0$ </u>

• E0 Transition Probability:  $B(E0; J \longrightarrow J') = \frac{1}{2J+1} |\langle J' || E0 || J \rangle|^2$ 

Monopole Transition Strength:

$$\rho^2 \left( E0; J \longrightarrow J' \right) = \frac{\left| \langle J' \left| |E0| \right| J \rangle \right|^2}{e^2 R^4}$$

Simple two levels model:



<u>Shape of excited states and mixing between them</u>

### Electric Monopole Transitions (E0) ΔJ=0

Experimentally we obtain:





### <u>Electric Monopole Transitions (E0) $\Delta J=0$ </u>





• For 
$$J_i = J_f = 0$$
  
 $q_K^2(E0/E2) = \frac{I_K(E0)}{I_K(E2)}$   
• For  $J_i = J_f \neq 0$   
 $\alpha_K = \frac{\alpha_K^{th}(M1) + (1 + q_j^2_{if}) \cdot \delta^2 \cdot \alpha_K^{th}(E2)}{(1 + \delta^2)}$ 

 $ho^2(\mathrm{E0}) = q_K^2(\mathrm{E0}/\mathrm{E2}) imes rac{lpha_K(\mathrm{E2})}{\Omega_K(\mathrm{E0})} imes W_\gamma(\mathrm{E2})$ If the E2 transition rate is known:

### 74 Se Recent Investigations

 K. Nomura et al., Phys. Rev. C 95, 064310 (2017) in the IBM framework predicted coexistence between spherical and oblate shapes



### 74 Se Recent Investigations

 K. Nomura et al., Phys. Rev. C 95, 064310 (2017) in the IBM framework predicted coexistence between spherical and oblate shapes



 In E. A. McCutchan et. al, Phys.Rev. C 87, 014307 (2013) the low-lying states are described as a set of near-spherical vibrational levels mixing strongly with a spectrum of prolate states



NuSpIn – 25/06/2019

### 74 Se Experiment

- Performed at Legnaro National Laboratory last year
- Levels of interest were populated in the EC/β<sup>+</sup> decay of <sup>74</sup>Br produced via the fusion evaporation <sup>60</sup>Ni(<sup>16</sup>O,pn)<sup>74</sup>Br reaction
- The ground state of <sup>74</sup>Br has a half-life of 24.5 m and the isomeric state a half-life of 46 m
- Off-line acquisition: activation and measurement time of 31 min
- Bombarding and measurement cicles were controlled by our acquisition system

### 74 Se Experimental Setup

- One HPGe detector
- Magnetic electron spectrometer
  - Magnetic coils
  - Si(Li) detector
  - Spectrometer efficiency is constant from 150 keV to 1600 keV (~ 1%)
  - Spectrometer trasmission  $\Delta p/p \sim 18\%$



NuSpIn – 25/06/2019

### 74 Se Experiment



E0 transitions — Mixing between 0<sup>+</sup> states and between 2<sup>+</sup> states

### 74 Se Experiment



• E0 transitions —> Mixing between 0<sup>+</sup> states and between 2<sup>+</sup> states

✓ 
$$q^2(0_2^+ \rightarrow 0_1^+) = 0.28(8) (q^2 = 0.203(14))$$

### **Spes Experimental Room**



## SLICES (Spes Low-energy Internal Conversion Electrons Spectrometer)

- Si(Li) detector
- HPGe detector
- Moving tape
- Plastic Scintillator
- Magnetic transport system



### <u>SLICES</u>



NuSpln – 25/06/2019

## **SLICES Si(Li) detector**



- Development in collaboration with the Jülich (Germany) research center
- Diameter = 70 mm (active area ~ 3900 mm<sup>2</sup>)
- Thickness = 6.8 mm
- Segmented in 32 independent sectors
- Requested FWHM(@~1MeV) ~ 3 keV



## **SLICES Si(Li) detector**







### **SLICES Efficiency**

Distances: Source-Magnets = 50 mm, Magnets-Detector = 40 mm



NuSpIn – 25/06/2019





NuSpln – 25/06/2019



NuSpIn – 25/06/2019

#### Naomi Marchini

cold preamplifier (FET)



NuSpIn - 25/06/2019

#### Naomi Marchini

cold preamplifier (FET)







cold preamplifier (FET)

#### NuSpln – 25/06/2019



| Strips | Live<br>Time | τ   | FWHM<br>(@975<br>keV) |
|--------|--------------|-----|-----------------------|
| 2A     | 1500s        | 6µs | 3.4keV                |
| А      | 1500s        | 6µs | 3.7keV                |
| А      | 1500s        | 3µs | 2.4keV                |

warm preamplifier

<u></u> − •



cold preamplifier (FET)

#### NuSpln – 25/06/2019

### To Do List

### **SLICES**

Finalize the cooling system

• Finalize the mechanical structure design

• Test completed detector with proper sets of magnet

Commissioning @LABEC in Florence

 Study the first SPES low-energy beams (the most intense expected beams are Cs, Rb, Sr, Br, ...)

### To Do List

### **SLICES**

Finalize the cooling system

• Finalize the mechanical structure design

• Test completed detector with proper sets of magnet

Commissioning @LABEC in Florence

 Study the first SPES low-energy beams (the most intense expected beams are Cs, Rb, Sr, Br, ...)



# Thank you for the attention

74 Se Collaboration

A. Nannini<sup>1</sup>, N. Gelli<sup>1</sup>, N. Marchini<sup>1,2</sup>, M. Ottanelli<sup>1</sup>, A. Perego<sup>1,3</sup>, M. Rocchini<sup>1</sup>, G. Benzoni<sup>4</sup>, D. Brugnara<sup>5</sup>,
 A. Buccola<sup>1,3</sup>, G. Carozzi<sup>5</sup>, A. Goasduff<sup>5</sup>, E.T. Gregor<sup>6</sup>, D. Mengoni<sup>5</sup>, F. Recchia<sup>5</sup>, D. Rosso<sup>6</sup>, A. Saltarelli<sup>2,7</sup>,
 M. Siciliano<sup>6</sup>, J.J. Valiente-Dobon<sup>6</sup>, I. Zanon<sup>5</sup>.

<sup>1</sup> INFN, Sezione di Firenze, Firenze, Italy.
 <sup>2</sup> Division of Physics, School of Science and Technology, Università di Camerino, Camerino (Macerata), Italy.
 <sup>3</sup> Università degli Studi di Firenze, Firenze, Italy.
 <sup>4</sup> INFN, Sezione di Milano, Milano, Italy.
 <sup>5</sup> Dipartimento di Fisica e Astronomia and INFN, Sezione di Padova, Padova, Italy.
 <sup>6</sup> INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy.
 <sup>7</sup> INFN, Sezione di Perugia, Perugia, Italy.

#### **SLICES Collaboration**

N. Marchini<sup>1,2</sup>, A. Nannini<sup>1</sup>, M. Ottanelli<sup>1</sup>, M. Rocchini<sup>1</sup>, A. Saltarelli<sup>2,3</sup>, G. Benzoni<sup>4</sup>, A. Goasduff<sup>5</sup>, T. Krings<sup>6</sup>, A. Gottardo<sup>7</sup>, J.J. Valiente-Dóbon<sup>7</sup>

<sup>1</sup> INFN, Firenze Division
 <sup>2</sup> University of Camerino
 <sup>3</sup> INFN, Perugia Division
 <sup>4</sup> INFN, Milano Division
 <sup>5</sup> University of Padova
 <sup>6</sup> Inst. fur Kernphysik, Forschungszentrum Jülich
 <sup>7</sup> INFN, LNL Division

### Selenium Isotopes (Z=34)

Several theoretical investigations confirm:

 For Z~N Se isotopes an oblate shape for the ground state with a strong configuration mixing for the low-lying excited levels, coexisting with a exited prolate configuration

 For the heavier Se isotopes a prolate ground state is expected to coexist with an excited oblate configuration



K. Nomura et al., Phys. Rev. C 95, 064310 (2017)

### Why Electron Spectroscopy?

